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Abstract.
We examine the impact of domain on parse selection accuracy,in the context of precision HPSG

parsing using the English Resource Grammar, using two training corpora and four test corpora and
evaluating using exact tree matches as well as dependency F-scores. In addition to determining the
relative impact of in- vs. cross-domain parse selection training on parser performance, we propose
strategies to avoid cross-domain performance penalty whenlimited in-domain data is available. Our
work supports previous research showing that in-domain training data significantly improves parse
selection accuracy, and that it provides greater parser accuracy than an out-of-domain training corpus
of the same size, but we verify experimentally that this holds for a handcrafted grammar, observing
a 10–16% improvement in exact match and 5–6% improvement in dependency F-score by using a
domain-matched training corpus. We also find it is possible to considerably improve parse selection
accuracy through construction of even small-scale in-domain treebanks, and learning of parse se-
lection models over in-domain and out-of-domain data. Naively adding an 11000-token in-domain
training corpus boosts dependency F-score by 2–3% over using solely out-of-domain data. We inves-
tigate more sophisticated strategies for combining data from these sources to train models: weighted
linear interpolation between the single-domain models, and training a model from the combined data,
optionally duplicating the smaller corpus to give it a higher weighting. The most successful strategy
is training a monolithic model after duplicating the smaller corpus, which gives an improvement over
a range of weightings, but we also show that the optimal valuefor these parameters can be estimated
on a case-by-case basis using a cross-validation strategy.This domain-tuning strategy provides a
further performance improvement of up to 2.3% for exact match and 0.9% for dependency F-score
compared to the naive combination strategy using the same data.
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1. Introduction

In recent years there has been a growing awareness of the domain-brittleness of
parsers (Gildea, 2001), and a variety of methods for adapting parsers to new do-
mains have been developed (Roark and Bacchiani, 2003; Blitzer et al., 2006; Hara
et al., 2007; Rimell and Clark, 2009; Finkel and Manning, 2009). Much of this
previous work has looked at parsing with treebank-derived grammars, and it is not
clear how applicable the results are to the scenario of parsing with hand-crafted
precision grammars. This paper explores domain adaptationin the context of parse
selection for HPSG-based precision grammars, based on the English Resource
Grammar (Flickinger, 2000).

Parsing with precision grammars is generally a two-stage process: (1) the full
parse yield of the precision grammar is calculated for a given item, often in the
form of a packed forest for efficiency (Oepen and Carroll, 2000; Zhang et al.,
2007); and (2) the individual analyses in the parse forest are ranked using a dis-
criminative statistical model (“parse selection”). In thedomain of treebank parsing,
the Charniak and Johnson (2005) reranking parser adopts an analogous strategy,
except that ranking and pruning are incorporated into the first stage, and the second
stage is based on only the top-ranked parses from the first stage. Some differences
in this precision parsing process suggest that domain-specificity could be a less
pressing issue than has been seen in previous work. For one thing, a hand-written
precision grammar based on linguistic theory will often encode more generally
applicable facts about language than what can be learnt froma specific treebank.
Furthermore, McClosky et al. (2006) show that their discriminative re-ranker is
less susceptible to domain effects than their generative parser, and hence we might
expect the precision grammar parsing, which uses a discriminative model, to show
less domain bias. However, neither of these suppositions have been tested in any
systematic way, and so one of the goals of this work is to explore the scope of
domain effects in an HPSG precision grammar framework.

Another aspect of this work that differs from previous domain adaptation work
is that our interest in parse selection accuracy is two-fold. Like previous work,
we are interested in the top-ranked parse being as accurate as possible, but we
are also concerned with how parse ranking feeds into the treebanking process. The
Redwoods treebanks associated with the HPSG-based EnglishResource Grammar,
as described in Section 2.1, are built by parsing sentences,and then having an anno-
tator select the correct tree from amongst then-best analyses. Annotation efficiency
can be improved by using a lowern, which is only possible if the parse selection is
accurate enough to reliably rank the correct parse within that topn. Hence, in order
to build new treebanks in new domains, we need a statistical model that works in
different domains, or a method to easily adapt a model for thenew domain, without
requiring a large treebank for the particular domain.

The primary contributions of this paper are: (a) exploration of the relative ef-
fects of domain on parse selection accuracy for a precision grammar of HPSG; (b)
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investigation of the most effective and robust methods for using small amounts of
in-domain training data. This has been made possible by the recent creation of mul-
tiple ERG treebanks of sufficient size, and spanning complexand variable domains
enabling us to explore these issues systematically for the first time for precision
HPSG parsing. We additionally introduce a methodology for quantitatively and
qualitatively comparing different corpora for lexico-syntactic divergences.

2. Background

2.1. REDWOODS-STYLE TREEBANKING

The annotated corpora used in this study form the Redwoods treebank (Oepen
et al., 2004), which has been updated for the October 2010 version of the English
Resource Grammar (ERG: Copestake and Flickinger (2000), Flickinger (2000),
Flickinger (2011)). In brief, the treebank is constructed by parsing each sentence
in the corpus using the ERG, automatically identifying (up to) the 500 most likely
parses, then manually identifying the correct parse usingdiscriminants(Carter,
1997; Oepen et al., 2002) to allow or disallow constructionspostulated by the
grammar for a particular sentence. The discriminants used in the Redwoods tree-
bank consist of the 200 unary and binary syntactic and lexical rules of the ERG,
along with the lexical entries themselves, which together form the relevant sources
of ambiguity in each parse forest. When a new version of the grammar is re-
leased, the recorded discriminant-level annotations enable semi-automatic updat-
ing of the treebank, requiring manual intervention only fornew sources of ambi-
guity introduced by changes to the grammar. Parse ranking isdetermined using a
maximum entropy model trained on the previous version of thetreebank. Similar
discriminant-based treebank annotation has also been employed in the development
of the Alpino treebank for Dutch (Bouma et al., 2001), and in treebanks built using
the LFG Parsebanker (Rosén et al., 2009).

This grammar-centric method of treebank construction differs in a couple of
fundamental aspects to that used for other widely used treebanks such as the Penn
Treebank for English (Marcus et al., 1993), or the TIGER treebank for German
(Brants et al., 2002). The dynamic nature of the treebank means that as linguis-
tic analysis improves and matures, the treebank can be updated to reflect modern
analyses, without expensive full re-annotation. Furthermore, the treebanking pro-
cess supplies a wealth of negative training data (from rejected alternative analyses
licensed by the grammar) which is used to build the discriminative parse selection
models.

2.2. DOMAIN ADAPTATION FOR PARSE SELECTION

It is relatively easy to motivate the need for domain adaptation: if we wish to utilise
the outputs of a given parser in some application, it is oftenthe case that our target
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domain differs from that for which the parser was originallydeveloped, leading to
a higher error rate in the target domain.

English-language parsers are often trained on the Penn Treebank, but unsur-
prisingly the domain of financial newswire text is not appropriate for many NLP
applications. Gildea (2001) found that training a parser onthe WSJ corpus rather
than the Brown corpus resulted in significantly worse performance over Brown
corpus test data, reporting a 3.5% drop⋆ in F-score over labelled constituents⋆⋆

from 84.1%. Gildea uses Model 1 of Collins (1997) to measure changes in parser
performance, but other work finds similar penalties with alternative parsers and
domains as described below.

Some work goes further, also investigating strategies for avoiding these perfor-
mance penalties when moving across domains. Roark and Bacchiani (2003) show
that using a technique known as maximuma posterioriestimation on the produc-
tions in a probabilistic context-free grammar, it is possible to make more efficient
use of in-domain and out-of-domain training data, giving labelled constituent F-
score improvements of up to 2.5% over using only in-domain data when the amount
of in-domain training is very limited (from a baseline of 80.5%), arguing that the
conclusion of Gildea (2001) that out-of-domain data has very little value, was
premature. Honnibal et al. (2009) found that the C&C parser (Clark and Curran,
2007b) trained on WSJ text gives a 4.3% lower F-score (based on CCG dependen-
cies) when tested on Wikipedia data compared to held-out WSJdata (which had
an F-score of 85.1%), but that self-training the super-tagging component on parsed
in-domain data reduced this penalty to 3.8%.

Plank and van Noord (2008) investigate domain adaptation ofa parser trained on
the Alpino Dutch treebank (Van der Beek et al., 2002) usingauxiliary distributions,
by augmenting the model trained from a small quantity of in-domain data, with a
real-valued feature which takes the value of the negative logarithm of the condi-
tional probability of the sentence according to the larger out-of-domain model. This
approach achieves performance between 1% worse and 4% better than a model
trained by simply combining the in-domain and out-of-domain data, improving the
performance over a purely in-domain model by up to 1%, although over most test
corpora there is only a small increase or decrease, indicating that integrating out-
of-domain training data is difficult in this case. An alternative strategy of creating
a model with only two features – the conditional probabilities from the in-domain
and out-of-domain models – yields more modest improvementsof around 0.6%,
but more reliably.

⋆ All percentage changes quoted in this section are absolute.
⋆⋆ The precision, recall and F-score figures in this work and that described below can be broadly

grouped into two categories: (1) constituent-based evaluation, loosely or exactly following PARSE-
VAL (Black et al., 1991), which requires parse tree constituents to have the same label and token
span as the gold-standard; and (2) dependency-based evaluation (discussed more in Section 3.3),
which requires matching dependency tuples between tokens of the sentence. These metrics produce
different results, and even the relative changes should notbe considered directly comparable. Results
are often reported for only one of the two, however.
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For adapting WSJ-trained parsers into the biomedical domain, Clegg and Shep-
herd (2005) investigate the performance of three treebank parsers (Collins, 1999;
Charniak, 2000; Bikel, 2002) over the GENIA treebank (Ohta et al., 2002), finding
that labelled constituent-based F-scores are 8–9% lower than those obtained over
WSJ data, and that these errors can be slightly ameliorated by combining the out-
puts of different parsers in various ways. Lease and Charniak (2005) observe that
PARSEVAL F-score from the Charniak parser trained on the WSJis lower by 13%
over GENIA and 4% over the Brown corpus, compared with parsing in-domain
data which gets an F-score of 89.5%. They show that using shallow domain-specific
resources such as a domain-specific POS tagger and named entities from a medical
thesaurus avoids some of the cross-domain training performance penalty, increas-
ing the GENIA F-score by 3.3%. A somewhat similar conclusionis found by
Rimell and Clark (2009) using the C&C parser, then mapping the parser output
to the grammatical relations (somewhat like dependencies)of the BioInfer corpus
(Pyysalo et al., 2007) to calculate F-score. Using a domain-specific POS-tagger,
and to a lesser extent a domain-tuned supertagger for the CCGlexical categories,
improves F-score by 5.5% from the baseline of 76.0%. McClosky and Charniak
(2008) show that it is possible to adapt the Charniak parser to the biomedical
domain without a domain-specific treebank using self-training, i.e. learning from
automatically created parser output, thus improving the baseline F-score of 80.4%
over the GENIA corpus by 3.9%. In the HPSG space, Hara et al. (2005), also
working on the GENIA corpus, show that it is possible to augment a larger log-
linear model trained on the WSJ with carefully selected features derived from a
smaller in-domain treebank. They report a 1.6% improvementin constituent F-
score compared to a baseline of 85.1% using a WSJ model only, and a 0.5%
improvement over simply retraining a new model from the combined WSJ and
GENIA training data, while greatly reducing the training time. In later work, Hara
et al. (2007) show that simply retraining the lexical entry features (rather than
the grammatical ones) could yield further improvements of around 2% over this
method.

3. Resources

3.1. CORPORA

At present, there are two corpora available for the ERG whichare large enough
individually for training a parse selection model.

First, we use the LOGON corpus (Oepen et al., 2004), a collection of English
translations of Norwegian hiking texts from the LOGON project. It is freely avail-
able for download, and contains 8,550 sentences which have exactly one gold
standard tree annotated in the treebank.⋆ We divided these sentences into training
and development data. The translations in LOGON include alternative English

⋆ This omits six small sections ‘jhu’, ‘jhk’, ‘psu’, ‘psk’, ‘tgu’ and ‘tgk’.
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translations of each source sentence from up to three different translators, although
direct repetitions are very rare. To ensure that the similarities between these trans-
lations did not interfere with the results, we placed equivalent translations in the
same section, so that two translations of the same sentence would never occur
between both training and test corpora. The ERG was extensively developed for
the LOGON project (particularly in terms of lexicon) so the grammar may show
a slight bias towards this particular corpus as it was implicitly tuned for it, and as
such, we would expect the corpus to be easier for the ERG to parse.

Second, we use the more recent WeScience corpus (Ytrestøl etal., 2009), a set
of Wikipedia articles related to computational linguistics, which is, again, freely
downloadable. With 9,167 sentences with a single gold-standard tree, it is slightly
larger than the LOGON corpus in the number of sentences, and has somewhat
longer average sentence length. Crucially for our purposes, it is in a very different
domain, and beyond both corpora exhibiting fairly formal written prose, there is
little similarity in content (we examine this in more detailin Section 3.1.1). We
use only 7,631 of those sentences, again dividing them into atraining set and a
development set, preserving the remainder for future work.

We are able to use LOGON and WeScience as both training and test datasets to
explore in- and cross-domain effects. We additionally experiment with a smaller-
size corpus as test data only: the Cathedral and Bazaar corpus,⋆ on open-source
software development. This treebanked corpus is also included with the ERG dis-
tribution, and as a single-author text, could be expected tobe slightly more homo-
geneous than the other corpora. Finally, we use one more corpus which is not yet
publicly available, labelled ‘robot1’, which consists of transcripts of several spoken
dialogues between two humans, one of whom is simulating a robot collaborating
in a coloured-block-hunting task (Flickinger et al., 2009). As natural dialogue, the
utterances in this corpus are on average relatively short and full of disfluencies,
including many which are not full sentences. This makes it quite different to the
carefully edited written prose that comprises the other three corpora we use. The
various corpora are described in Table I.

While we are framing our work here as a problem of “domain”-adaptation, we
have not actually defined what the term means. It is surprisingly difficult to find
a satisfying definition for this somewhat nebulous concept.Informally, a domain
can be considered to be a homogeneous topic paired with a particular register of
language. The focused content of a domain corpus tends to lead to skewed lexical
and constructional distributions, which have a direct impact on parsing as the skew
in one domain tends to differ significantly from that in another. We return to explore
the question of just how different our corpora are in Section3.1.2, but in general
we consider each corpus we use to consist of a single domain.

⋆ http://www.catb.org/esr/writings/cathedral-bazaar (authored by Eric
Raymond).
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Table I. Corpora we use for our experiments and example sentences from each.

Corpus Description Example

WeScience
(WESC)

Wikipedia articles There are a number of competitions and
prizes to promote research in artificial in-
telligence.

LOGON
(LOG)

Hiking brochures The bird life is typical of an area of this
kind.

Cathedral and
Bazaar (C&B)

Essay on Linux
development

I had been preaching the Unix gospel of
small tools, rapid prototyping and evolu-
tionary programming for years.

Robot1
(ROBOT1)

Transcribed inter-
active dialogue

okay I walked through the hallway um
turned right
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Figure 1. Histogram of sentence lengths for the corpora

3.1.1. Corpus Characteristics

In Table II we give broad statistics such as counts of tokens (using the tokenisation
in the gold-standard ERG output) and types, including thosewhich are outside
the ERG’s lexicon. WESCIENCE stands out as having a large vocabulary, as well
as a high proportion of unknown types, with 43% of types outside the lexicon,
which is fairly unsurprising given the nature of its content. LOGON has a lower
proportion at only 9%, which may also reflect the history of the grammar – as
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Table II. Corpora we use for our experiments showing numbers of “validated” sentences which have
a single gold parse (which are the only sentences used in these experiments), average sentence length
(in tokens), average ambiguity on test set (number of parsesproduced per sentence with each sentence
capped at 500 parses, approximating, but underestimating,the difficulty of the parse selection problem),
and the top-500 random baseline calculated as the average probability of randomly selecting the correct
parse for each sentence from this top 500 according to the parse selection model used in treebanking
(which is not truly random). To show the effects of the top-500 cutoff, we also show the number of
validated sentences and average ambiguity over only sentences with< 500 parses. Also shown are
statistics for various interesting tokens and constituents, both per-sentence and per-token (in square
brackets). O.O.V. denotes ‘out-of-vocabulary’ for the lexicon of the ‘1010’ version of the ERG which
we use here.

WESCIENCE LOGON C&B ROBOT1

Validated Sentences 7631 8550 567 1303

– training 6149 6823 0 768

– test 1482 1727 567 535

Parses/Sent 260.5 229.5 304.0 83.5

Top-500 random (exact) 13.3% 13.7% 7.8% 28.0%

Top-500 random (top 10) 35.3% 37.5% 24.5% 69.2%

Valid’d Sent,< 500 parses 4173 5338 265 1169

Parses/Sent,< 500 parses 62.1 66.8 80.7 35.8

Word Types 13662 7888 2744 664

O.O.V. Word Types 5931 744 306 15

Tokens 15.02 [1.000] 13.63 [1.000] 18.67 [1.000] 5.82 [1.000]

O.O.V. Tokens 2.02 [0.070] 1.49 [0.025] 1.66 [0.039] 1.11 [0.003]

Construction Rules 20.74 [1.380] 18.85 [1.383] 25.72 [1.378] 8.28 [1.421]

Lexical Rules 5.78 [0.382] 5.13 [0.372] 6.12 [0.322] 2.34 [0.245]

Noun Compounds 1.10 [0.073] 0.58 [0.043] 1.10 [0.059] 0.12 [0.021]

Co-ordination 0.65 [0.043] 0.67 [0.049] 0.56 [0.030] 0.09 [0.015]

Passives 0.54 [0.036] 0.27 [0.020] 0.28 [0.015] 0.02 [0.004]

noted above, it was extensively expanded for the LOGON project, so the lexicon
is somewhat tuned to match that corpus. C&B, at only 11%, alsoshows a fairly
small percentage of unknown types, which is perhaps influenced by having only a
single author. The very small vocabulary ofROBOT1 has, perhaps unsurprisingly,
an even lower proportion unknown-word proportion of 2.3%, although this could
also be partly due to grammar tuning. As we would expect, on a per-token basis, the
number of unknown words is much smaller, and the relative differences between
the corpora also decrease, ranging from 0.3% of tokens forROBOT1 to 7.0% for
WESCIENCE.
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10 MACKINLAY, DRIDAN, FLICKINGER AND BALDWIN

We also list the ambiguity of the sentences in terms of the number of parses
postulated by the ERG (counting at most 500 parses per sentence, and hence un-
derestimating), giving an idea of how difficult the parse selection task is beyond
the rough estimates we can make on the basis of sentence length. ROBOT1 again
stands out as being particularly different in this regard, with fewer than 100 per sen-
tence, while LOGON is intermediate in difficulty compared tothe progressively
more ambiguous sentences of WESCIENCE and C&B, in line with the increased
sentence lengths in these corpora.

We show some more details of sentence length in the histogramin Figure 1. The
distributions are mostly unsurprising, with the longer-tailed distribution for C&B
that we would expect for the longer average sentence length.The most noticeable
value is the unexpectedly large value in the 0–5 range for WeScience, which is
likely a reflection of the frequent occurrence of short article titles in this corpus.

Table II also shows statistics on the applications of ERG rules to give an idea of
the relative complexities of the parse trees, separately tothe sentence length. We
show statistics on a per-sentence as well as a per-token basis, as the latter attempts
to factor out the effects of sentence length on the complexity. The ERG rules can
be divided up into “construction rules”, which correspond to unary or binary rules
accounting for syntactic phenomena, and “lexical rules”, which can be roughly
equated to morphological and morphosyntactic phenomena such as inflection.⋆

We show a crude comparison of the number of applications of these rules in the
gold-standard parse trees in the corpora. Construction rules are not meaningfully
different on a per-token level, suggesting that perhaps after scaling for sentence
length, the corpora have similar levels of syntactic complexity. However, there are
substantially more applications of lexical rules in WESCIENCE and LOGON than
in C&B and particularlyROBOT1. Some explanations for this are discussed in
Section 3.1.2.

We also show some finer-grained statistics, intended to provide more insight
into the distribution of some selected interesting syntactic phenomena which show
different distributions between the corpora. WESCIENCE has a much higher in-
cidence of the passive voice,⋆⋆ with 0.036 instances per token indicating almost
twice as many occurrences per token than the nearest competitor LOGON with
0.020. This is probably in line with what we would expect given the nature of
the different domains, with WESCIENCE containing more formal academic-style
prose, rather than the slightly more conversational style of LOGON. C&B has
a lower incidence still – again the style is more conversational, and the essay is
written from a first-person perspective.ROBOT1 has by far the lowest, but this is
just what we would expect for spoken interactive dialogue.

⋆ A third class of rules relates to bookkeeping for punctuation, which is linguistically less
interesting and ignored here.
⋆⋆ This was determined by counting instances of grammar rules which are subtypes ofBA-

SIC_PASSIVE_VERB_LR.
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The relative differences between the corpora of frequency of noun compounds
and coordination‡ are smaller, but still noticeable. The technical subject matter of
WESCIENCE may partially account for the greater frequency of noun compounds.
The coordination differences are not as easy to explain, except for their infrequent
occurrence in the simpleROBOT1 sentences.

3.1.2. Inter-corpus comparisons

It is clear that the corpora have different characteristicsin terms of broad statis-
tical counts, but it may also be informative to directly compare pairs of corpora
to measure how alike they are in a more statistically-grounded way. While we
have only briefly addressed the question of exactly what constitutes a domain, a
statistical measure of corpus similarity should partiallyserve as a proxy for this.
Counting how many words occur in only one of the corpora givesus some idea
of the difference; however, this discards most of the distributional information. To
make a more thorough comparison, we follow the technique of Verspoor et al.
(2009) in using relative entropy to compare pairs of corpora, which we briefly
describe here.

We choose some vocabularyV which is a subset of the union of the vocabularies
of the two corpora, and we then construct probability distributionsP1 andP2 using
maximum likelihood estimation and add-one smoothing for each corpus. We can
calculate the relative entropy over the words in that vocabulary using corpus 1
against corpus 2 as follows:

D(P1||P2) =
∑

w∈V

P1(w) log2
P1(w)

P2(w)

This gives us a way of quantifying how different the distributions of words
are between corpora. Also following Verspoor et al., we showvalues for different
frequency cutoffs after sorting the vocabulary by combinedfrequency between the
two corpora.

However, we may also be interested in the words which most strongly charac-
terise the differences between the corpora. Rayson and Garside (2000) outline a
way to achieve this using log-likelihood. Given two corporawith total number of
tokensT1 andT2, we can calculate the expected frequency count for a particular
word with observed countst1 andt2 in each corpus as follows:

E1 = T1

(t1 + t2)

T1 + T2

E2 = T2

(t1 + t2)

T1 + T2

From this, we can calculate the log-likelihood for the particular word:

L = 2

(

t1 log2
t1

E1

+ t2 log2
t2

E2

)

‡ These are subtypes ofBASIC_N_N_CMPND_PHRandBASIC_COORD_PHRrespectively.
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If we sort the log-likelihood values for each word by decreasing log-likelihood
values, those items at the top of the list are those which are most different between
the corpora and thus in one view characterise the differences between the corpora.

In our work, we are also interested in the distributions of syntactic constructions
between the corpora to see whether the differences extend beyond the vocabularies.
We can achieve a coarse version of this using a variant of the word-based proce-
dures described above. We take advantage of the fact that therules in the ERG
are named according to their syntactic function. The grammar has some 200 con-
struction rules and lexical rules to account for different phenomena. For example,
three subject-head rules account for the subject of a sentence attaching to the verb
phrase in different circumstances, while twelve differentrules are used for different
kinds of noun-compounding. Like lexical items, these ruleshave widely different
relative frequencies of use from one another, and we also expect these rules may
have different frequencies of usage between different corpora. By replacing words
in the procedures described above with rule names, so that the vocabulary is the
complete inventory of available rules, we can calculate relative entropy figures and
log-likelihood figures across lexical rules, constructionrules, or a combination of
both. In fact Rayson and Garside (2000) note that their procedure could be applied
to other entities such as POS-tags, so applying it to syntactic construction names is
within the spirit of the original method.

We could possibly improve over aggregating solely by rule name – some very
general rules such as the head-complement rules can apply toa wide range of
lexical heads with complement slots, including prepositions, verbs, adjectives and
nouns, and we are ignoring this potentially interesting information. Nonetheless,
this fairly simple procedure provides a concise indicationof the relative syntactic
similarity between the corpora.

We show the results for log-likelihood and relative entropyagainst subsets of
each training corpus in Table III, also showing the relativeentropy in graphical
format in Figure 2. First, examining the words with the greatest log-likelihood
differences, we can see some instructive differences between the corpora (noting
that items prefixed with ‘¬’ (e.g. ‘¬language_n1’) are more frequent in the refer-
ence corpus, not the test corpus). C&B andROBOT1 are characterised by much
more frequent use of the pronounI than the other corpora, which is predictable as
C&B is a conversational first-person essay andROBOT1 is a transcription of dialog.
The second-person pronounyou is somewhat characteristic of all the corpora (less
strongly for C&B) compared to WESCIENCE, again indicative of the styles we
would expect. The other more specific vocabulary items are also clearly character-
istic of the domain – it is unsurprising that C&B talks aboutbazaarsandsoftware,
LOGON talks abouttrails androuteswhile WESCIENCE talks aboutlanguage.

The relative entropy differences between the in-domain comparison versus out-
of-domain comparison are striking. The in-domain relativeentropy is 0.03 or less
for the top-100 words and 0.25 or less for the top-1000, versus 0.36 or more and
0.96 or more for the respective out-of-domain figures. It is perhaps not so surprising

rolc-crossdom.tex; 22/09/2011; 10:20; p.12



13

Table III. Test corpora compared with reference training corpora (1833-sentence subset of WE-
SCIENCE; 1710-sentence subset of LOGON). The in-domain test set (i.e. a different subset of
the same source corpus) is labelled in bold. Relative entropy is shown for the reference corpus
against test corpus and then vice versa, and uses add-one smoothing, only examining items
with at least 5 occurrences (10 for grammatical rules) in thecombination of the corpus pair.
Additionally there is a cutoff by rank in combined frequencylist for lexical items (100 or 1000
words). Div(ergen)t rules and words are those with the highest log-likelihood (which is shown)
against the combined distribution, with the item prefixed with ‘¬’ if the highest frequency is in
the reference distribution.

Ref: WESC (train) WESCIENCE LOGON C&B ROBOT1

Types in ref 50.9% 32.6% 48.7% 51.7%

Tokens in ref 86.7% 63.7% 78.6% 63.3%

Rel-Ent (Top-100) 0.00/0.03 0.52/1.14 0.38/0.36 1.04/4.14

Rel-Ent (Top-1k) 0.11/0.14 2.09/2.70 0.96/1.61 1.71/7.45

Div’t lexemes 457.0:¬language_n1

354.7: you

251.6: trail_n1

231.5: trip_n1

199.3: route_n1

463.2: i

185.7:¬language_n1

128.5: bazaar_n1

89.7: project_n1

88.5: you

836.4: okay_s_adv

794.4: box_n1

511.4: you

367.5: i

363.0: yeah_root_pre

Rel-Ent (all rules) 0.01/0.01 0.33/0.34 0.27/0.28 1.82/2.94

Rel-Ent (constr.) 0.01/0.01 0.29/0.31 0.28/0.28 1.99/3.23

Rel-Ent (lex rules) 0.00/0.00 0.46/0.42 0.19/0.23 0.94/0.95

Ref: LOG (train) WESCIENCE LOGON C&B ROBOT1

Types in ref 22.6% 54.3% 31.7% 57.1%

Tokens in ref 59.2% 87.6% 65.6% 69.9%

Rel-Ent (Top-100) 1.25/0.51 0.02/0.03 1.08/0.49 1.06/3.25

Rel-Ent (Top-1k) 2.72/2.01 0.25/0.24 2.11/2.11 1.76/6.28

Div’t lexemes 356.9: language_n1

279.4:¬you

234.0:¬trail_n1

228.2:¬trip_n1

208.7:¬route_n1

466.6: i

168.3: project_n1

155.1: linux_n1

151.8: software_n1

132.8:¬trail_n1

820.9: okay_s_adv

779.6: box_n1

373.2: i

356.2: yeah_root_pre

300.5: room_n1

Rel-Ent (all rules) 0.35/0.34 0.01/0.02 0.43/0.40 1.60/2.68

Rel-Ent (constr.) 0.32/0.29 0.01/0.02 0.40/0.35 1.85/2.98

Rel-Ent (lex rules) 0.47/0.50 0.01/0.01 0.53/0.59 0.45/0.62

that we should see low relative entropy on a per-word basis within a domain, and
high relative entropy on a word-by-word basis compared to other corpora with
different subject matter and register, where we expect a widely different vocabulary
(as the figures for token-overlap with the reference corpus indicate).

It is more interesting that the corpora have widely different distributions of syn-
tactic constructions and lexical rule applications, even though these differences are
much less dramatic in terms of bits of entropy, with out-of-domain corpora having
as few as 0.19 bits of relative entropy compared to in-domain. It is not necessarily
clear that this should be the case. While we might suspect that a dialogue-based
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Figure 2. Graphical representation of relative entropy of the test corpora against the two
reference corpora (subset of the information in Table III)

corpus likeROBOT1 would have a higher percentage of imperative constructions
for example, we could not know whether this would have a noticeable impact
on the overall distribution. In fact,ROBOT1 stands out as being very different
syntactically, but we can also see some other noticeable differences between the
corpora. C&B seems to be most similar to WESCIENCE in terms of syntax as well
as vocabulary.

Examining the details of the rules that characterise the inter-corpus differences,
they are less easy to explain than the lexical items, even with knowledge of the
meanings of the rules within the ERG internals. WESCIENCE has a disproportion-
ately high number of occurrences ofHDN_BNP_C, corresponding to noun phrases
headed by common nouns with no determiners such asalgorithms, possibly due
to article titles and factual, general subject matter. Meanwhile LOGON has a pre-
ponderance ofHDN_BNP-PN_C instances, denoting bare noun phrases with proper
nouns, likeJotunheimen(a region in Norway), which is probably related to the
large number of place names mentioned. Another unusually frequent construction
in LOGON isNP_ADV _C, for adverbial noun phrases likeherein They came here.
The discrepancy between proper noun usage may also partially explain the much
higher prevalence ofHDN-OPTCMP_C in WESCIENCE, which is used for com-
mon nouns with optional complements. A cursory examinationof the parse trees
suggests that another contributing factor is the fact that nouns with optional com-
plements are often nominalisations likeimplementation, and such constructions
seem particularly frequent in the technical subject matterof WESCIENCE.

rolc-crossdom.tex; 22/09/2011; 10:20; p.14



15

From all of this, we can see some reasons why a parse selectionmodel trained
in one domain may perform poorly over a second domain. Not only are there dif-
ferences in distributions of lexical items to take into account, there are also widely
different distributions of rule applications, both lexical and syntactic. As the parse
selection models we use take into account rule names of nodesand their ancestors
as well as individual lexical entries, all of this could be important.

3.2. EXACT MATCH EVALUATION

As we mentioned in the introduction, one of the differences between this work
and previous work is the different motivation for domain adaptation: in addition to
wanting the best top-ranked parse possible, we also intend to use the parser to build
treebanksfor new domains.

Previous work using the ERG and related DELPH-IN grammars has generally
reported results on the basis of exact match of the top parse or exact match within
the top-10 parses (Zhang et al., 2007). One reason for the usage of exact match
accuracy is to reflect the utility of a ranking model for treebanking.

In Redwoods-style treebanking (Oepen et al., 2004), the parse selection model
is crucial for two reasons. Firstly, a correct parse close toor at the top of the ranking
enables the treebanker to quickly select it as the gold-standard parse tree. Secondly,
the treebanking process requires the selection of some ad-hoc cutoff for the number
of highest-ranked parses to present to the treebanker, which is usually set to 500.
This number decides the balance between tractability in thetreebanking process for
the treebanker (and, to a lesser extent, the underlying machinery), and complete-
ness in terms of not excluding correct but low-ranked parses. Inevitably, there will
be a small amount of ‘leakage’ — correct parses which are not ranked high enough
to be considered — but we can reduce this while holding the number of parses
constant by providing a better parse selection model. So, better parse selection
models enable treebanks to be built more quickly and with greater coverage.

We use notation AccN to denote the exact gold-standard tree being found some-
where in the top-N parses. In terms of treebanking utility, Acc500 tells us whether
the correct analysis is available to the treebanker in the top-500 analyses; con-
versely, it is possible to calculate the averageN required to achieve, say, 80%
exact match parsing accuracy. However, these values are expensive to calculate for
dozens of different parser configurations. Following Zhanget al. (2007), we use
less-expensive Acc1 (primarily) or Acc10, which we argue act as a as a proxy for
Acc500; this is evaluated in Section 5.1. Both of the figures also tell us important
information about the treebanking utility of the parse selection model: whether the
target parse is ranked highest, or occurs within a highly-ranked manageable group
of trees.
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16 MACKINLAY, DRIDAN, FLICKINGER AND BALDWIN

3.3. EDM EVALUATION

Granular evaluation metrics of the type generally reportedin other parsing research
are complementary to the exact match metric, in that rather than evaluating whether
the top parse is completely correct, they indicate how closethe top parse is to the
gold standard. There is currently no standard granular evaluation metric suitable for
evaluating the detailed output of the PET parser. While it may seem that existing
metrics could be used, hence allowing direct comparison, recent work from Clark
and Curran (2007a) and Miyao et al. (2007) has shown that mapping between
different parser representations is a far from trivial task. Moreover, since our main
purpose in this work is to measure effects of domain on parse selection within
one formalism, we are more interested in seeing how close we can get to the
analysis that our parser aims to produce than in directly comparing with parsers
with different output. For that reason, building on the workof Kaplan et al. (2004),
Briscoe and Carroll (2006), and Plank and van Noord (2008),inter alia, we adopt
a dependency tuple-based evaluation method, but in a formalism that is native to
the ERG and also an interestingly large family of DELPH-IN grammars couched
in the HPSG formalism.

The goal of the PET parser is to extract meaning from text, andwe consider
three classes of information that contribute to meaning:

class 1: core argument structure, either surface or deep structure

class 2: predicate information, such as the lemma, POS and sense

class 3: properties of events and entities, such as tense, number andgender

Many existing dependency-based evaluation metrics use grammatical relations
to describeclass 1 information. That is, the dependencies are usually labels like
SUBJ, OBJ andMOD (or ADJUNCT). While these grammatical functions allow us
to describe the surface level linguistic structure, they donot make explicit the
underlying deep structure of any utterance. This deep structure describes semantic
rather than syntactic arguments and can be seen in resourcessuch as the Prague
Dependency Treebank (Böhmová et al., 2003), the Redwoods treebank (Oepen
et al., 2004) and PropBank (Kingsbury et al., 2002). Using this semantic argument
structure for parser evaluation not only gets closer to the actual sentence meaning
that we are trying to extract, but is potentially more general, as there is generally
wider agreement on semantic arguments than on, for example,whether the main
verb depends on the auxiliary, or vice versa. Minimal Recursion Semantics (MRS:
Copestake et al. (2005)) is one formalism (and the one which is native to the
ERG) that allows us to describe this semantic argument structure, and our granular
evaluation metric is based on this formalism.

3.3.1. Minimal Recursion Semantics

Minimal Recursion Semantics (MRS) is a flat semantic formalism that represents
semantics with a bag ofelementary predicationsand a list of scopal constraints. An
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〈h1,
h3:pron<0:2>(ARG0 x4{PERS 3,NUM sg,GEND m, PRONTYPE std_pron}),
h5:pronoun_q<0:2>(ARG0 x4, RSTR h6, BODY h7),
h8:_persuade_v_of<3:12>(ARG0 e2{SF prop, TENSE past,MOOD indicative}

ARG1 x4, ARG2 x10, ARG3 h9)
,

h11:proper_q<13:16>(ARG0 x10{PERS 3,NUM sg}, RSTR h12, BODY h13),
h14:named<13:16>(ARG0 x10, CARG Kim),
h15:_leave_v_1<20:26>(ARG0 e16{SF p-or-q, TENSE untensed ,MOOD indicative}

ARG1 x10, ARG2 p
17

)
{ h12 =q h14, h9 =q h15, h6 =q h3 } 〉

Figure 3. MRS representation ofHe persuaded Kim to leave.

elementary predication can be directly related to words in the text, or can reflect
a grammatical construction, such as compounding. Each elementary predication
has a relation name, a label and an index (designatedARG0). Arguments of a
predication are represented by ‘bleached’ARGn roles (which are to be semanti-
cally interpreted for classes of predicates). Figure 3 shows the MRS representing
the semantic analysis ofHe persuaded Kim to leave. Here we see six elemen-
tary predications, four with text referents and two as construction-specific covert
quantifiers. TheARG1, ARG2 andARG3 roles of the verbal predicates describe the
predicate–argument relations and demonstrate co-indexation between theARG2 of
persuadeand theARG1 of leave. Entities and events carry properties such as gender
or tense which are attached to their index variables. An evaluation scheme based
on MRS therefore allows us to evaluateclass 1 information using the roles,class 2
information through predicate names andclass 3 information from the properties
of the index variables.

3.3.2. Elementary Dependencies

The metric we use is Elementary Dependency Match (EDM: (Dridan, 2009)),
based on elements that Oepen and Lønning (2006) defined as Elementary De-
pendencies (EDs), a variable-free reduction of MRS which excludes scopal in-
formation. We differ from their definition by using sub-string character spans (e.g.
<3:12>) instead of predicate names (_persuade_v_of) to represent nodes in the de-
pendency graph. In keeping with our information classes, this allows us to separate
the evaluation ofclass 2 information fromclass 1. Our EDM metric hence consists
of three types of triples which align with the three information classes:

ARGS: spani rolej spank

NAMES: spani NAME relationi

PROPS: spani propertyj valuej

In these forms,relation is the predicate name of an elementary predication
from the MRS,role is an argument label such asARG1, property refers to an
attribute such asTENSE or GEND andvalue is an appropriate instantiation for the
respective property. Figure 4 shows the triples produced for the MRS in Figure 3.

rolc-crossdom.tex; 22/09/2011; 10:20; p.17



18 MACKINLAY, DRIDAN, FLICKINGER AND BALDWIN

The text segment associated with each character span is shown for illustrative
purposes, and is not part of the triple.

“He” <0:2> ARG0 <0:2> “He”

“persuaded” <3:12> ARG1 <0:2> “He”

“persuaded” <3:12> ARG2 <13:16>“Kim”

“persuaded” <3:12> ARG3 <20:26>“leave.”

“Kim” <13:16> ARG0 <13:16>“Kim”

“leave.” <20:26> ARG1 <13:16>“Kim”

“He” <0:2> NAME pronoun_q
“He” <0:2> NAME pron

“persuaded” <3:12> NAME _persuade_v_of
“Kim” <13:16> NAME proper_q

“Kim” <13:16> NAME named

“leave.” <20:26> NAME _leave_v_1

“He” <0:2> GEND m

“He” <0:2> NUM sg

“He” <0:2> PERS 3

“He” <0:2> PRONTYPEstd_pron

“persuaded” <3:12> MOOD indicative

“persuaded” <3:12> SF prop

“persuaded” <3:12> TENSE past

“Kim” <13:16> NUM sg

“Kim” <13:16> PERS 3

“leave.” <20:26> MOOD indicative

“leave.” <20:26> SF p-or-q

“leave.” <20:26> TENSE untensed

Figure 4. Gold triples forHe persuaded Kim to leave.

During evaluation, we compare the triples from the gold standard analysis with
those ranked top by the parser, and calculate precision, recall and F1-score across
all triples, as well as across the three separate triple types (NAME, ARG andPROP).

3.3.3. Analysis

The full EDM metric weights each triple equally, which may not be ideal for all sce-
narios. The division by triple type gives one alternative view that provides a more
complete picture of what sort of mistakes are being made by the parser, but other
weightings are also possible. To get some idea of the numericrange of the different
EDM configurations, we parsed sections of the WESCIENCE and LOGON corpora
using the English Resource Grammar (ERG: Flickinger (2000)), ranking against
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Figure 5. Comparison of variants of the EDM metric

parse selection models trained on different quantities of in-domain data (this idea
is developed further in Section 5.1). Figure 5 shows the relative differences between
five configurations: all triples together (EDMall), theNAME, ARG andPROPtriple
types separately (EDMN, EDMA and EDMP, respectively) and measuring just the
NAME andARG types together (EDMNA). This last configuration produces a metric
broadly similar to the CCG dependencies used by Clark and Curran (2007b) and
also to the predicate argument structures produced by the ENJU parser (Miyao
and Tsujii, 2008), in that, in all cases, the same classes (class 1 and class 2) of
information are being evaluated⋆ .

Here and below, we create the zero-training data points on the y-axes for EDM
by randomly selecting a parse from the (at most) top-500 parses included in the
treebanks distributed with the ERG, and choosing one of those at random to create
the EDM triples. We repeat the process over the whole test corpus 10 times to get an
average, since we cannot simply use the raw number of parse trees to calculate the
probability of randomly selecting the correct one, as is possible with exact match.
Because the ranking of the top-500 parse trees is based on a parse selection model,
this is not truly random as it uses training data to create the500-tree parse forest
(the same is also true for exact match). However, a truly random baseline is very
difficult to create, as it is not possible to create a genuinely random parse forest.

We can see that all EDM configurations show approximately thesame trends,
and maintain their relative order. EDMP is consistently higher, which follows from
the fact that many of the properties are inter-dependent, and that the parser enforces
agreement, so that getting one unambiguous property correct via the lexicon or the
morphology will lead to getting others correct. The most difficult type of triple

⋆ While predicate information could be mostly aligned between the three metrics, the actual
predicate arguments that representclass 1 are different enough in each case due to different analyses
of, for example, conjunctions and infinitivalto, that direct comparison is not practical.
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to correctly identify is theARG type, which represents the core semantic argu-
ments. We will primarily report results using EDMNA as the configuration most
like previous work. All of the scores are fairly high – even the no-training data
baseline (subject to the caveat above about this actually using a parse selection
model) for the most difficult EDMA relationship has an F-score above 0.7, and
the most compatible mode EDMNA starts at 0.77 for the baseline, and rises to
between 0.87 and 0.89 where there is abundant in-domain training data. The scores
for EDMNA are calculated from 2.8–2.9 tuples per token, depending on the corpus.

We emphasise that we do not expect these metrics to produce results that are di-
rectly compatible with dependency evaluations from other formalisms. As Dridan
(2009) notes, even with simple dependency systems, there isa large range of differ-
ences reflecting the different assumptions made in the grammar, and mapping be-
tween them is an object of research in its own right (e.g. Clark and Curran (2007a)).
However, our EDMNA metric is broadly comparable to other dependency-based
metrics, and it provides an evaluation of parse quality which complements the
exact match metric. In particular, it may provide a better indication of utility to
downstream applications than exact match, since many ‘near-match’ trees that
score zero in the Acc1 metric may in fact get most dependencies correct. Software
to produce the EDM results will be made available as part of the DELPH-IN code
distribution.⋆

3.4. COMPARISON OF EVALUATION METRICS

It is also worth considering at this point whether the differences we could ob-
serve between the behaviours of exact match and dependency-based evaluation are
purely because the EDM metric is far less sensitive to effects of sentence length.
Correcting Acc1 for sentence length is difficult, but we show in Table IV the various
results aggregated by sentence length trained on solely in-domain data. As the sen-
tences get longer, the number of parsing decisions needed increases exponentially,
so it is unsurprising that exact match accuracy decreases asthe sentence lengths
increase, but it is not necessarily clear that this should bebe the case for EDMNA,
since we may be getting most dependencies correct within thesentence. The table
suggests that this is indeed the case – the longer sentences are harder to parse even
relative to their sentence length, as the relatively length-independent EDM metric
does indeed decrease. The question of whether EDM gives us more than we could
get from correcting Acc for sentence length is difficult to answer. However, we
can see that the well-populated 30–34 range has a lower Acc1 and Acc10 than the
25–29 (unsurprisingly), but a higher EDM F-score, which lends some support to
this notion.

Relatedly, we can see that LOGON gets higher exact match performance over
a similar quantity of training data than WESCIENCE – we would like to know if
this is purely because of the slightly higher sentence length and average ambiguity

⋆ http://www.delph-in.net
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Table IV. WESCIENCEand LOGON test corpora using models trained on all in-domaintokens
aggregated by sentence length, scored against exact match (Acc1), top-10 match (Acc10) and
EDMNA. EDMNA figures come from an average of 2.81 gold tuples per token for WESCIENCE

and 2.87 per token for LOGON.

WESCIENCE LOGON

Length Sents Acc1 Acc10 EDMNA Sents Acc1 Acc10 EDMNA

P / R / F P / R / F

0–4 350 87.4 99.7 93.7 / 93.7 / 93.7 361 93.1 100.0 97.1 / 97.0 / 97.1

5–9 167 62.3 94.6 90.5 / 89.8 / 90.1 302 71.2 96.0 93.4 / 93.1 / 93.2

10–14 247 46.6 88.7 91.4 / 89.6 / 90.5 311 58.5 90.0 93.4 / 93.6 /93.5

15–19 234 26.5 65.4 88.8 / 87.1 / 88.0 298 34.6 71.8 91.7 / 89.2 /90.5

20–24 212 20.3 61.8 89.1 / 87.2 / 88.1 231 20.3 58.9 89.9 / 88.6 /89.2

25–29 136 12.5 36.8 87.5 / 83.5 / 85.4 135 11.1 31.1 89.2 / 88.9 /89.0

30–34 87 6.9 27.6 88.4 / 87.2 / 87.8 56 10.7 32.1 90.2 / 86.2 / 88.2

35–39 36 2.8 16.7 86.7 / 84.8 / 85.8 21 4.8 14.3 90.4 / 81.9 / 85.9

40–44 11 0.0 9.1 85.1 / 68.9 / 76.1 7 0.0 0.0 88.3 / 77.5 / 82.5

45+ 2 0.0 50.0 98.5 / 35.7 / 52.4 5 20.0 20.0 96.1 / 97.0 / 96.5

ALL 1482 44.1 73.7 89.2 / 86.6 / 87.8 1727 52.5 77.9 91.5 / 90.0 /90.8

of WESCIENCE. The lower EDM score for in-domain WESCIENCE compared to
in-domain LOGON in Figure 5 makes us suspect that WESCIENCE is intrinsically
a ‘harder’ corpus to parse with the ERG (which would be unsurprising, given that
it has been more extensively tuned for LOGON), but we would like to evaluate
this against Acc as well. The results in Table IV lend some support to the greater
difficulty of WESCIENCE, even for sentences of similar length: all ranges with
more than 20 sentences have higher performance for LOGON.

Splitting results by sentence length also allows us to more closely examine the
EDM numbers. For both corpora in Table IV, we see a preferencefor precision
over recall when measured over all sentences, a trend that isrepeated in all EDM
results reported here. When broken down by sentence length,we see that this trend
is fairly stable, but more pronounced as the sentences get longer. Error analysis at
the individual sentence level has shown us that this imbalance reflects a slight but
genuine tendency of the parser towards simpler analyses with fewer dependencies,
which is perhaps an artefact of the parse selection models being designed to pro-
duce the correct syntactic analysis, rather then being optimised to produce semantic
dependencies.
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4. Experiments

The test and training corpora are all originally parsed withPET (Callmeier, 2000)
and the most recent “1010” version of the ERG. The text was pre-POS-tagged with
TnT (Brants, 2000) to enable handling of unknown words, and other preprocessing
is done using the default settings for the corpus as configured in the [incr tsdb()]
performance and competence profiler (Oepen, 2001).

We evaluate over corpora in several different domains, training discriminative
parse selection models based on manually annotated treebank data drawn from the
corresponding training corpus.

4.1. METHODOLOGY

In our experiments we are interested first in the effects of domain on parse selection
accuracy, as evaluated using our various evaluation metrics (exact match at varying
top-N beam widths, and EDM F-score). The second stage of our experiments is
designed to investigate the domain adaptation problem, by evaluating different
methods of combining in- and out-of-domain data, and to explore how much in-
domain data is required to make an appreciable difference toparsing accuracy in a
particular domain. Both stages of the experiment drew from the same training and
test data sections.

To generate training and test data from the two larger corpora (LOGON and
WeScience), we first shuffled the items in each corpus with no regard for section
boundaries,⋆ and then selected roughly equal-sized training and test item sets from
each (see Table II for the exact item numbers). Finally, we randomly divided the
respective training sections into fixed subsections to use in generating learning
curves, ensuring there were approximately equal numbers oftokens in the sections
from each training corpus (Table II shows this also corresponds to a similar number
of rule applications, since WESCIENCE and LOGON both have 1.38 construction
rules per token and around 0.38 lexical rules). The same combinations of training
data subsections for a given amount of training data were used in all experiments.

We train the discriminative parse selection models in the framework of Vell-
dal (2007), along the lines of previous work such as Zhang et al. (2007), which
involves feeding in both correct and incorrect parses licensed by the grammar to
the TADM toolkit (Malouf, 2002), and learning a maximum entropy model. In all
experiments, we use the default feature function sets from previous work, with
training parameters selected from the grid search we conducted.

⋆ LOGON, however, contains either 2 or 3 English translationsof each original Norwegian sen-
tence (as noted in Section 3.1), so as part of this, we ensuredthat sentences translated from the same
source sentence were placed together in the partitioning, to limit the chance of having very similar
sentences in multiple sections.
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4.1.1. Grid searching to optimise training parameters

To train our models, it is necessary to select in advance a number of parameters.
Firstly, we need to set the standard maximum entropy parameters required by
TADM: absolute tolerance, relative tolerance and variance. Additionally, Velldal
(2007) notes the importance of other significant thresholdsrelated to the features
themselves rather than the learner.Grandparenting levelis the maximum depth
above a target node we will use to extract features when training the model. A
level of 2 means that when we examine a particular target node, we create features
based on the immediate parent node (one level) as well as the grandparent (two
levels). This can improve performance (Zhang et al., 2007),but can also cause
data-sparseness for small training sets, which we will often be dealing with here.

Another important feature-extraction parameter is therelevance count thresh-
old. Following Malouf and Van Noord (2004), a feature is relevant if it takes
different values between known correct and incorrect parses, and thus is useful for
discriminating between different outputs. The relevance count of a given feature is
the number of input strings for which the feature is relevant, so by demanding
a minimum value for this over the whole corpus, we affect which features are
included in the model.

While we could have selected these parameters on the basis ofsolid performers
in prior work such as Zhang et al. (2007), most of this work assumes a relatively
large training set, which is not always the case for our work here; for example,
learning curves by their nature require a smaller data set. Velldal (2007) details
performing a grid search to optimise these parameters. Essentially we can enu-
merate all possible values we wish to test for each parameter, and evaluate the
performance of each possible combination of those parameters. We can achieve this
using cross-validation over our existing corpus, repeatedly holding out a different
subset to test on, and training on the remainder then aggregating the results over
all the folds. The maxent training parameters and the model selection parameters
can be optimised simultaneously, since there may be interactions between them.
For training, we make the reasonable approximation that relevance counts over7

8

of the corpus that we use in 8-fold cross-validation are approximately the same
as those over the whole corpus, to avoid the need for multipleexpensive feature
extraction operations for each fold. The optimal parametercombinations are then
simply those with the highest exact match accuracy over the training data.

Here, we would like to ideally find the set of parameters whichperforms opti-
mally over each different set of training data – which is dozens of different training
sets. To perform grid searches over all of these, and have different parameters
configured for all of these would be prohibitively expensiveand complex. Instead,
we aimed to find a single set of parameters which performed close to optimally in a
range of configurations, from a small single corpus trainingset to a larger training
set encompassing both corpora.
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We performed a grid search over the following training corpus combinations,
to make sure that we were testing over a representative rangeof corpus sizes and
combinations reflecting the diverse corpus sizes we would beusing for training
data:
− 11,000-token subsets of both WeScience and LOGON (750–850 sentences)
− 23,000-token subsets of WeScience, LOGON and a 50/50 split of the two
− 46,000-token subsets of WeScience, LOGON and a 50/50 split of the two
− 92,000 tokens of a 50/50 WeScience/LOGON split
− Full WeScience and LOGON training corpora (185,000 tokens/13,000 sen-

tences)
For each corpus combination, we tested 288 different parameter combinations (all
possible combinations from those listed below), trying a range of values for each
parameter comfortably spanning those which produced near state-of-the-art perfor-
mance in (Zhang et al., 2007). We aggregated accuracy over the cross-validation
folds to give an overall accuracy figure for each parameter combination, and con-
sidered only combinations that ranked in the top 100 out of 288 for all of the corpus
combinations (suggesting they are robust across differenttraining data sizes), giv-
ing 22 parameter combinations. From these, we selected the combination with the
highest mean rank, although all 22 combinations had exact match accuracy within
0.8% of the best for the corpus, so in practice any would perform well. For tractabil-
ity, we followed the standard practice of Velldal (2007) in using a pre-parsed corpus
of the top 500 parse trees for each sentence according to someprevious model.
In each iteration we reranked these parse trees using the newmodel rather than
exhaustively reparsing, which saves a considerable amountof computation time
and produces approximately equivalent accuracy figures.

We tested the following parameters in different combinations (the parameters
we ultimately selected using the described procedure are highlighted in bold):
− Relevance count threshold:1, 2, 3, 5
− Grandparenting level:1, 2, 3, 4
− Maxent relative tolerance:10−6, 10−8, 10−10

− Maxent variance:104, 102, 100, 10−2, 10−4, 10−6

The parameters selected differ from Zhang et al. (2007) in using only 3 levels
of grandparenting rather than 4, which is unsurprising given the comments above
about data-sparseness in smaller training corpora.

4.1.2. Single domain models

To evaluate the cross-domain effect, we use the parameters found during the grid
search and train parse selection models over differing amounts of training data from
LOGON and WeScience. We apply them both in-domain (to the corresponding
held-out test data) and cross-domain (to the test datasets for the other corpora) and
look at the relative differences between domains, according to our various evalua-
tion metrics. We also created learning curves using different-sized subsets of both

rolc-crossdom.tex; 22/09/2011; 10:20; p.24



25

WeScience and LOGON as the training data against each test corpus, including the
in-domain corpus.

4.1.3. Models from unmodified concatenated data

Next we looked at some simple strategies for alleviating thecross-domain penalty.
From the work described in Section 2.2, there are various strategies for achieving
this. Domain-adapted POS-taggers or supertaggers (Lease and Charniak, 2005;
Rimell and Clark, 2009), have been successful in the biomedical domain, in the
latter case for helping to constrain the parser search space. This is not something
we investigate here since domain-adapted tagging models are not readily available;
additionally, in the parsing configuration we use, POS tagging is only used for
unknown words, but investigating the utility of POS-tagging for domain adaptation
is a possible area for future work.

Given that we already have relatively large training corpora in separate domains,
a logical first step is to see how much manually-treebanked data we need in order to
improve accuracy in a new domain, whether we should combine this with existing
data, and how best to do so.

First, we evaluated a relatively naive method for combiningtraining data from
the LOGON and WeScience domains into one model. In this strategy, denoted
CONCAT, we simply concatenate the training data sets and train a MaxEnt model
from this, in the same way as the “combined” method of Hara et al. (2005). To sim-
ulate the effects of differing amounts of treebanking effort, we varied the amount
of in-domain training data used in each model.

4.1.4. Linear combinations of trained models

An alternate approach to CONCAT, which we denote COMBIN, is to use MaxEnt
models derived from simple arithmetic combinations of other pre-trained models,
similar to McClosky et al. (2010). A MaxEnt model is simply a set of feature
weights. If we have two trained MaxEnt models A and B, and we wish to use
weighting parametersα andβ to combine these models into a new model C, the
weightλ for a given feature in C will be given byλC = αλA+βλB whereλA and
λB have values of zero if the given feature is not explicitly encoded in the model.
Since parse ranking uses the unnormalized MaxEnt score, only the ratioα

β
matters,

we constrainα andβ to sum to one, preventing multiple equivalent models. For
example, assume we have the following weighting parametersand feature/weight
pairs (i.e. vectors ofλ values) for each model:

α = 0.3 β = 0.7

mA = {1 : 1.5, 2 : 2.0}

mB = {1 : 0.5, 3 : −1.0}

The resulting model is simply the weighted linear combination:

mC = {1 : 0.8, 2 : 0.6, 3 : −0.7}

rolc-crossdom.tex; 22/09/2011; 10:20; p.25



26 MACKINLAY, DRIDAN, FLICKINGER AND BALDWIN

For our experiments here, the pre-trained models come from exactly one single-
corpus treebank before they are arithmetically combined.

This is a potentially useful strategy as it allows flexible and fast tuning of parsing
models with the possibility of improving performance in a number of cases. Using
this strategy, we might as a starting point create a combinedmodel by setting the
weighting of each corpus in proportion to the number of sentences in the treebank
from which the model was trained. (We may expect to produce somewhat similar
results to the aforementioned strategy of training a model from the concatenated
treebanks, but there is no guarantee that this is the case.) However, often we might
expect better results by biasing this weighting somewhat – in general, we probably
wish to give more weighting to the model trained on a more similar treebank. It is
clear that this could be useful in the situation where we havea small treebank and
trained model in a new domain that we wish to use most effectively, alongside an
existing model from a larger treebank – by modifying the weightings, and probably
boosting the weighting for the corpus in the new domain, we have a way to make
maximal use of this small amount of training data, without needing to discard any-
thing from the larger established treebank. A related situation is where we have two
models trained from treebanks in two domains, and wish to parse a third domain
for which we have no treebanked data. Intuitively, we shouldmake use of all the
data we have, but it may improve performance if we give a higher weighting to
the domain that is more “similar” to the target domain – i.e. providing a higher
accuracy parse selection model. McClosky et al. (2010) shows somea priori ways
to determine this for a different parsing framework. We do not investigate this in
detail here, but as described below, we do examine some techniques to optimise
the parameters when we know that the target domain very closely matches some
small training corpus.

4.1.5. Monolithic models from duplicated data

We also investigate another method for weighting two training corpora differently
when they have different sizes and probably different levels of appropriateness for
the test data. In strategy DUPLIC, we simply duplicate one of the corpora some
number of times, as if the training corpus consisted of multiple copies of every
sentence, then concatenate the data to the other corpus and extract training features
and train a model in the same way. As noted in Section 4.1.1 we pay attention to
certain ‘counts’ associated with each maximum entropy feature – in particular the
relevance count threshold, for how many times a feature has been used to distin-
guish between good and bad parses. These relevance counts are incremented in
the duplicate corpora as if the sentences are genuinely distinct. This is obviously
a generalisation of CONCAT, but we treat it separately, as CONCAT is the usual
default approach for combining such corpora.

In comparison to COMBIN, this is a more expensive approach to optimise over
different corpus combination parameters, since we need to retrain the maximum
entropy model (and, currently, recreate the feature cache)for each different weight-
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ing of the corpora, rather than building at most two models and performing a rapid
linear combination. Nonetheless, this might lead to a more accurate model than
COMBIN, justifying the extra cost, although in a system which is trying to optimise
between several different corpora (rather than just two as we are doing here), this
extra cost may be prohibitive. If the parameters are known inadvance however, and
we are merely trying to build a model, the difference in training time between the
two approaches is minimal.

4.1.6. Optimising combination parameters

One of the potential disadvantages of the more nuanced combination strategies
is the need to determine effective parameters. Even if COMBIN or DUPLIC can
provide superior results with some set of parameters, this does not address the
question of determining the optimal set of parameters without evaluating over the
test data (which would not be realistic for a real-world application where the gold-
standard annotations presumably don’t exist). In the same way that we can tune
the grid-search parameters using cross-validation over the training data, we can
also use a similar approach to optimise the weights or multiplication factors for
each domain. Specifically, we can use our small in-domain training set, divide that
corpus inton cross-validation folds, and combine the training data fromeach fold
with the complete data-set from the larger out-of-domain corpus using COMBIN or
DUPLIC with various sets of parameters, then test over the test fold.

For 8-fold cross-validation, which we use here, this means we must train and test
8 models per set of parameters. For 7 different DUPLIC and 10 different COMBIN

parameters, this means 136 different models are required per test-run. As in the
grid-search discussed above, we rerank rather than reparsethese sentences.

By aggregating these test fold results, we can select the optimal parameters.
For tractability, we only calculate Acc1 (using reranking of the parse forest) for
the cross-validation results, and simply select the highest accuracy combination as
‘optimal’. A more sophisticated approach could also take into account factors such
as consistency, as measured by a low variance across the cross-validation folds, and
also pay attention to the other scoring metrics.

Of course, we cannot guarantee that the parameters will indeed be optimal over
the test data. For this reason, as a post hoc analysis, we evaluate the various param-
eter combinations both using cross-validation and over thetest data, to determine
how close the best performer in cross-validation is to the optimal parameter values
for unseen data.

4.1.7. Software Tools

To perform the tasks, including grid search, optimisation over COMBIN and DU-
PLIC parameters described in Section 4.1.6, and reranking of existing parse forests
against a new model, we customised a C++ implementation of the feature extrac-
tion code and model training code, known asMUPS (duplicating functionality of
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Table V. Results using different metrics (exact match on highest-ranked tree [Acc1], exact
match within top-10 [Acc10], and Precision, Recall and F-score over EDMNA and F-score
on EDMall), for each of the test corpora, training on pure WeScience orpure LOGON data,
or for a baseline randomly selected from the top-500 parses ranked according to a combined
WESCIENCE/LOGON model. As in all results, WESC and LOG test data is 2 sections of
held-out data not overlapping with training data. Bold indicates the training data has the
same domain as the test data. Figures in square brackets are standard deviations, calculated
over 10 random partitions of the data

Test Train Acc1 Acc10 EDMNA

P / R / F

LOG

– 13.7 37.5 79.2 / 75.7 / 77.4

WESC 36.7[4.5] 66.7[3.1] 86.2[0.9] / 83.7[1.1] / 84.9[0.6]

LOG 52.5[2.6] 77.9[3.1] 91.6[0.7] / 90.0[1.2] / 90.8[0.7]

WESC

– 13.3 35.3 79.6 / 76.0 / 77.7

WESC 44.1[2.9] 73.7[3.6] 89.2[1.1] / 86.5[2.1] / 87.9[1.5]

LOG 33.6[4.4] 62.4[3.7] 84.3[0.8] / 80.8[1.7] / 82.5[1.2]

C&B

– 7.8 24.5 80.5 / 76.5 / 78.4

WESC 27.2[6.0] 61.9[5.0] 88.3[1.2] / 84.5[2.8] / 86.4[1.7]

LOG 27.7[3.7] 57.7[7.4] 87.2[0.9] / 82.9[2.9] / 85.0[1.7]

ROBOT1

– 28.0 69.2 74.0 / 66.1 / 69.8

WESC 43.4[6.7] 86.4[3.3] 82.3[3.0] / 75.3[5.2] / 78.6[4.1]

LOG 45.6[5.7] 89.2[2.3] 82.6[3.9] / 70.1[4.4] / 75.9[3.7]

[incr tsdb()] in some cases). We plan to make this code available to the community
as part of the previously-mentioned DELPH-IN code distribution.

5. Results

5.1. EVALUATING THE CROSS-DOMAIN PERFORMANCE PENALTY

In Table V we give an indication of the size of cross-domain performance penalty
using the ERG for these four domains, against the baseline performance for ref-
erence (giving us an idea of how difficult the parse selectionproblem is for that
corpus). It shows results using several metrics: exact match on the highest-ranked
parse, exact match within the top 10, and precision, recall and F-score for EDMall
and EDMNA.

Of primary interest here is how the performance over WeScience data drops
when the training data is purely LOGON versus purely in-domain WeScience data,
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and vice versa. A related question is whether for a given new target domain (e.g.
C&B or ROBOT1) we would expect each alternative training corpus to give equally
useful accuracy figures. So, the results shown are over all test corpora using all
WeScience data or all LOGON data as training data.

We see here that in our two major test sets, a domain penalty can be seen across
all evaluation metrics. For EDMNA, which is the most comparable to dependency
evaluations in other formalisms, the out-of-domain drop is5–6%, which is in line
with domain effects seen elsewhere. For the Acc1 and Acc10 figures, there is a
larger 10.5–15.8% drop, which is not unexpected for a stricter metric.

The results also show standard deviations, calculated by comparing results from
10 random sub-partitions of the test data. As we would expect, the standard devi-
ation is larger for the exact match metric, where it ranges from 2.5 to 7%, than
for the less-variable EDM F-score, where it is between 0.6 and 4.1%. We also see
much greater variation for all metrics on theROBOT1 corpus, and smaller standard
deviation for exact match when the training corpus is from the same domain, al-
though this does not hold for other metrics, and may not be meaningful. For the two
test corpora where in-domain data is available, we see that the difference between
accuracies from in-domain and out-of-domain training datais substantially larger
than the standard deviations, but for the other two test corpora the differences
caused by using the different training corpora are much smaller than the standard
deviation for a single model, so the difference is too small to draw conclusions.

Comparing these results with the relative entropy figures inFigure 2, there is
generally a correlation between a lower relative entropy and higher parse selection
score using the corresponding model. The WESCIENCE and LOGON test corpora
unsurprisingly show this effect most strongly, where thereare the largest relative
entropy differences against one training corpus versus theother (close to zero for
the in-domain corpus). Both C&B andROBOT1 generally show differences ac-
cording to the metrics which agree with the differences in relative entropy against
the training corpora (lower relative entropy corresponding to higher scores), but as
we noted, these differences are not large enough to be clearly significant.

In Section 3.2, we argued that Acc1 and Acc10 are easy-to-calculate representa-
tives for a range of figures denoting treebanking utility. Toillustrate this, in Figure 6
we show the AccN that would be obtained for values ofN from one to 500 for
some of the same in-domain and cross-domain training/test combinations that are
shown in Table V. The full graphs more directly show the effects of interest for
treebanking, but they are expensive to create. Comparing between these graphs
and Table V, it appears that Acc1 and Acc10 are representing some of this picture.
In Figure 6a, the two parse selection models for the WeScience data set result in a
fairly consistent difference of around 11%, a consistency that can be seen just from
the Acc1 and Acc10 values in the table.⋆ For Figure 6b, the gap narrows as the
beam widens, a fact again reflected by comparing Acc1 and Acc10 for the relevant

⋆ The WESC treebank is parsed and treebanked against the top-500 parses according to a model
trained on the WESC data itself, so we might expect the accuracy to reach 100% in Figure 6a, but the
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Figure 6. Accuracy for gold-standard parse occurring within the top-N (i.e. AccN ) againstN

LOGON data set results. This narrowing gap shows that the impact of in- vs. out-
of-domain training data is reduced when we are looking at more parses – probably
because the less ambiguous sentences of LOGON are more likely to have less than
N possible parses for higher values ofN (i.e. all parses are within the beam), in
which case the parse selection model does not matter.

For the test sets for which we have no in-domain training data, there is little
difference between the two parse selection models. They do,however, provide an
interesting comparison between the exact match based metrics and the F-scores. In
terms of EDM, the WESC trained model gives almost the same results over C&B
(within 2%) as it does for the in-domain test set; however, the Acc1 results are much
lower. For theROBOT1 data set, the EDM results are substantially lower than on
any of the other test sets, but Acc1 and Acc10 are high. To partially explain this,
we can look back to Table II. We saw there that the ambiguity level of theROBOT1
corpus, measured in parses per sentence, was much lower thanthat of the other
data sets. This simplifies the parse selection task, since there are fewer analyses
to consider. Conversely, the longer and more ambiguous sentences in the C&B
corpus make it much more difficult to get every aspect of an analysis right. The
relatively high F-scores for this corpus suggest that both parse selection models
are doing a good job of returning a top parse with most of the dependencies and
constituents correct. The different behaviours of the AccN and EDM metrics on
different corpora show why we should consider both togetherin selecting the most
appropriate parse selection model for a particular corpus.For the rest of this work,
we primarily report results on exact match (Acc1) and EDMNA, with brief results
for Acc10 where appropriate.

model we use here does not use the complete WeScience data setand has slightly different training
parameters.
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The results in Table V were produced by using all the available training data for
each domain. We were also interested in how the results changed with the amount
of training data and so learning curves were produced for thesame training and
test sets. The learning curves obtained using the two different training corpora of
approximately 8000 sentences each are shown in Figures 7 and8 using the exact
match metric as well as EDM F-score over four different test-domains. In each
case, the in-domain corpus is marked as such.
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Figure 7. Learning Curves – exact match. ‘I.D.’ denotes in-domain corpus
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Figure 8. Learning Curves – EDMNA F-score

The basic shape of the curves is unsurprising. Generally, the curves are mono-
tonically increasing, so more training data of any type produces better results. This
effect continues even when relatively large amounts of training data were already
being used, but as we would expect, there is some flattening off in these curves, as
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the more training data we have, the less incrementally valuable it is. This levelling
off is more noticeable when the training data is entirely out-of-domain – suggesting
that there is a limit to the amount of out-of-domain data which can usefully improve
parsing performance, at least in isolation (i.e. when not incombination with in-
domain data, which is discussed in more detail below). Indeed, it is possible that too
much (solely) out-of-domain data could have a detrimental effect. There are small
drops in some of the learning curves as out-of-domain data isadded, particularly in
the Acc1 evaluation, for C&B,ROBOT1 and LOGON at various points, although
this is at most a very minor effect.

Again, we can clearly see that Acc1 and EDM give a different picture of per-
formance on the C&B andROBOT1 corpora. Comparing these figures tells us
something else about the different metrics: in some situations, Acc1 may be more
useful in differentiating the success of a given model on multiple domains. The
exact match metric shows more noticeable relative changes than EDM when we
make subtle changes in the model and the domain, emphasisingthe importance
of domain for treebanking or other applications where we demand an exact tree
match. The EDM results cluster more closely in absolute terms for most data sets
regardless of the amount of training data or the domain, but there are still reliable,
albeit small, changes as the amount of training data is altered. This follows from the
more ‘forgiving’ nature of the EDM-based evaluation, but italso tells us something
about the grammar: given a very small amount of training datafrom any domain,
the top-ranked parse will have most of the dependencies correct.

For maximum sensitivity in parse selection experiments (aswell as tractability
in experiments with many successive runs such as grid searches), we would argue
that the exact match metric is undoubtedly useful, and provides a complementary
perspective to EDM.

If the EDM metric, as intended, more closely reflects the performance we could
expect in downstream applications, it may appear that theseare more robust to
changes in domain. However, it is possible that for these applications using the
parser output, it is the error rate which is more important. From this perspective it
seems EDM can be more sensitive to choice of training domain than exact match.
From Table V, we can see that over WESCIENCE, for Acc1, the error rate goes
from 66.4% to 55.9%, a 16% relative reduction, when moving from out-of-domain
to in-domain training data, while the relative reduction inEDM F-score error rate
(from 17.5% to 12.1%) is 31%. Similarly for LOGON by using in-domain data,
we get a 25% relative error rate reduction for Acc1, and 39% for EDM.

It is also instructive to compare error rate reduction relative to the random base-
line (although it is not truly random as it incorporates the top-500 parses according
to a model which has training data from WESCIENCE and LOGON). For EDM
the relative reduction from using out-of-domain data is 21%for WESCIENCE,
and 33% for LOGON. This is smaller than the reduction in errorrate when we
move from out-of-domain to in-domain data (31% and 39% respectively, as quoted
above), suggesting that a tuned parse-selection model is quite important – it can
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give more of a performance boost over an informed but unmatched training corpus
than that unmatched corpus does over a random selection. However, further exper-
imentation would be required to determine whether the errorrate reduction is more
meaningful in terms of downstream utility.

Additionally, it seems that not all corpora are equal in terms of cross-domain
applicability. From Figures 7 and 8, we can see that WeScience as the only train-
ing corpus gives slightly better results for C&B (apart fromthe slightly higher
Acc1from the full 93000 token training sets when using LOGON), aswe would
predict from the relative entropy figures. On the other hand,the best training corpus
for ROBOT1 is less obvious. Indeed, it seems that training data beyondthe first
11000 tokens does very little, and sometimes decreases performance. LOGON
gives slightly higher exact match performance, although the figures are so variable
that the differences may not be meaningful. In general, training data does little
for ROBOT1 probably due to the very different nature of the corpus compared to
the data we have available, with the smallest absolute improvements and error rate
reductions over the baseline of any of the test corpora.

5.2. CONCAT: NAIVE CONCATENATION

Having measured how much our performance is affected by using only out-of-
domain data, we now look at the results from the simple concatenation of the two
corpora of training data (CONCAT). There are likely to be two significant factors
here – the amount of in-domain data, and the amount of out-of-domain data.

One common scenario might be that we have a fixed volume of training data,
and wish to know how much in-domain data we need to treebank tosubstantially
improve performance when combining it using CONCAT with the out-of-domain
data, or alternatively how much improvement we can expect from some volume of
in-domain data. Secondarily, it is interesting to investigate whether it is possible to
add too much out-of-domain data compared to in-domain – is there ever a situation
where more data does not improve performance?

In Figures 9 and 10 we show some indicative results for these questions, using
no out-of-domain data or all of it, and evaluate how they interact with different-
sized in-domain training corpora.

One interesting result from these figures is the effect that even a small amount
of in-domain training data can have. Using a model built onlyon approximately
11000 tokens on in-domain data, we get better results than the large out-of-domain
trained model. Over the WESCIENCE corpus, once we have around 23000 tokens
of in-domain data, the out-of-domain data is having almost no effect. There does
not appear to be a negative effect from including the out-of-domain data, but the
benefit is almost non-existent for WESCIENCE and very slight for the LOGON
corpus. We also see that the additional benefit of adding morein-domain data tails
off once we have a reasonable quantity (i.e. a few thousand sentences), which is a
similar effect to the learning curves.
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Figure 9. Combining in-domain and out-of-domain training data usingCONCAT: training a
model from concatenated training corpora: Exact match
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Figure 10. Combining in-domain and out-of-domain training data usingCONCAT: training a
model from concatenated training corpora: EDM

5.3. OPTIMISING PARAMETERS FOR CORPUS COMBINATION

While CONCAT is the most obvious strategy for making use of limited quantities
of in-domain training data when we already have an abundant corpus of out-of-
domain data, it is possible that some scheme which gives heavier weight to the
in-domain training data would provide superior performance. The COMBIN strat-
egy of Section 4.1.4 (linearly interpolating between two single-domain models)
is one way to address this, and the DUPLIC strategy from Section 4.1.5 (multi-
plying the in-domain corpus by some integer) is another. However, as noted in
Section 4.1.6, both strategies are parameterised, so ideally we need a method to
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Figure 11. Aggregated accuracy using COMBIN over the eight cross-validation folds of
the in-domain corpus, where the in-domain training data is the other seven folds and the
out-of-domain data is the entire other corpus

optimise the respective parameters in advance for unseen data. Cross-validation
over the in-domain training corpus may be able to achieve this with a relatively
simple implementation, and we investigate this possibility here.

The graphs in Figures 11 show COMBIN results for two different-sized in-
domain models, and how the performance varies as the weighting between the
in- and out-of-domain models is varied, with exact match accuracy calculated
by reranking rather than exhaustively reparsing. Clearly,the choice of weighting
makes a relatively large difference: the worst performing weight combination is
substantially worse than simply using the CONCAT strategy. Both curves show a
similar parabolic shape, with the optimal mixture point being further to the right
for the larger in-domain models in each case, meaning that itis better to weight
the in-domain model even more heavily when it is larger, presumably because it
is more reliable (compared to a model from a smaller treebank) as well as being
closely matched to the domain.

Figure 12 shows the results for DUPLIC, which duplicates the smaller in-domain
corpus some integral number of times and combines it with thelarger out-of-
domain corpus before training a model. Again, we show graphsfor two different
sized in-domain training sets, this time varying how many times the in-domain set
was duplicated before training the model.

For handling real-world data with an unbalanced in-domain corpus, we might
generally pick the best-performing parameter set from cross-validation and apply
that parameter combination to new data. We evaluate this approach over the test
data from previous sections (which has not been used for any of the parameter
tuning). In Table VI, we show the results over unseen test data, using the parameters
which performed best in training set cross-validation using DUPLIC (results for
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Figure 12. Aggregated accuracy using DUPLIC over the eight cross-validation folds of
the in-domain corpus, where the in-domain training data is the other seven folds and the
out-of-domain data is the entire other corpus

COMBIN did not reliably outperform the CONCAT benchmark). For another point
of comparison, we also applied the same technique using cross-validation over the
ROBOT1 development set (which has not yet been used until this point) combined
with different combinations of the WESCIENCE and LOGON training sets and
tested using the same test data as used in previous sections.

We calculate statistical significance using the “compute-intensive” shuffling
procedure of Yeh (2000). In a given iteration, for all results which differ between
the new method and the benchmark, we swap each result pair with probability 0.5
and test whether the new synthesised results differ by more than was observed
between the actual results of the new method and the benchmark (which would
suggest the difference is due to chance and the null hypothesis could be true), in-
crementing countc if this is the case. Repeating for some large number of iterations
t, thep-value can be estimated to be at mostc+1

t+1
.

Our end-to-end procedure selects a parameter with cross-validation, and uses
that parameter to build a model to apply to the test corpus. Totest whether this
technique gave a consistently significant boost over the benchmark, we aggregate
all benchmark results for the different test and training corpus combinations, and all
those to which we have applied parameter selection over DUPLIC. This aggregation
avoids multiple runs (using different training and/or testdata) falsely showing sig-
nificance by chance. DUPLIC in these conditions produces statistically significant
improvements over the benchmark on unseen data for Acc1, Acc10 and EDMNA at
p < 0.001 – even though the improvements are modest in some individualcases,
as we can see from the unaggregated results shown in Table VI.COMBIN (not
shown in the table) does not provide an improvement – all the metrics decrease,
Acc1 significantly so. But if we restrict ourselves to DUPLIC, it seems that this
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Table VI. Comparison of results for DUPLIC, with weighting parameter selected by cross-valida-
tion over training data (the first usage of theROBOT1 training data), and evaluated over standard
test sets and metrics (Acc1, Acc10and EDMNA) used previously. Aggregating the DUPLIC results
with CV-parameter selection indicates results are significantly improved over the benchmark at
p < 0.0001 for Acc1, Acc10and EDMNA

Test Train Tokens O.O.D Corp Weights A1 A10 EDM

I.D. O.O.D

LOG 11.6k 92.3k WESC
benchmark 45.0 72.4 88.1

DUPLIC (8, 1) 45.9 73.5 88.7

LOG 23.2k 92.3k WESC
benchmark 46.5 73.9 88.9

DUPLIC (3, 1) 47.7 74.6 89.1

ROBOT1 4.5k 92.8k LOG
benchmark 74.0 93.5 89.0

DUPLIC (3, 1) 75.1 93.6 88.8

ROBOT1 4.5k 92.3k WESC
benchmark 75.1 93.3 88.8

DUPLIC (4, 1) 75.5 93.3 89.2

ROBOT1 4.5k 92.8k W+L
benchmark 75.5 93.1 89.1

DUPLIC (10, 1) 77.8 93.5 90.0

WESC 11.5k 92.8k LOG
benchmark 37.9 66.9 84.1

DUPLIC (2, 1) 38.5 67.8 84.3

WESC 23.1k 92.8k LOG
benchmark 40.3 69.0 85.4

DUPLIC (10, 1) 42.0 71.3 86.3

simplistic and imperfect cross-validation technique to tune parameters can produce
statistically significant improvements in accuracy and F-score at the cost of only
some CPU-cycles, with no observed performance drops against the benchmark.
For 23000 tokens of WESCIENCE, we get a relative reduction in the exact match
error rate of 2.9% and 6.1% in the EDM F-score error rate, almost as much as we
would get from treebanking an extra 23000 tokens.

All of this is dependent on being able to closely match the test and training
corpora – we must be sure they are from the same domain, which may not be as
easy in practice as it is with curated data sets. The ‘shuffling’ we used to divide
up the corpora may mean that the match between the different corpus sections
is artificially close compared to what we would see in real-world data, so this
could have slightly inflated the performance improvements from upweighting the
in-domain data and parameter-selection using the trainingcorpus. The relative en-
tropy comparison we discussed in Section 3.1.2 suggests onepossible strategy for
matching training and test corpora by similarity automatically, and although the
comparison of lexical rules depended on hand-annotated gold standard data, the
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best parse from an automatically-created parse tree may be areasonable substitute.
Relatedly, we might be able to apply a more informed approachalong the lines of
McClosky et al. (2010), which suggests a model on the basis ofhow closely a test
corpus is predicted to match each possible training corpus.

5.4. APPLYING OTHER PARAMETERS TO TEST DATA

We have established that cross-validation over training data to select parameters
can give slightly improved parse selection models, but we have no guarantee that
the parameters we obtained were optimal. As an analysis phase, it is instructive to
evaluate a range of parameters over the test data, to see whatthe oracle performance
would be, and whether a more advanced parameter tuning technique could improve
over the relatively simple cross-validation approach, andto simply see how well the
cross-validation scores correlate with test scores.

We show the test set results using over a range of DUPLIC parameters in Fig-
ures 13, the analogue of Figure 12, and the EDM test set results in Figure 14.
From these, we can see that in some cases cross-validation provided a reasonable
estimate of test set performance and the optimal parameter.Over the smaller set
of WeScience training data, however, it was not helpful, performing best in cross-
validation with a(2, 1) weighting for in-domain against out-of-domain, while over
the test set, a(10, 1) weighting is substantially better, for both EDM and exact
match. We have again omitted the COMBIN results as the performance did not
reliably improve.

These results indicate that DUPLIC is tolerant of suboptimal parameter selec-
tion (this is not the case for COMBIN– the worst parameters produce substantially
worse performance than CONCAT). The exact match accuracy over the full corpus
usually increases monotonically, so it is almost always of some benefit to weight
the smaller in-domain corpus more heavily (although, presumably, at some point
these benefits vanish). The same is generally true for EDM, although the increase
is less convincing in this case.

While the cross-validation results seem to provide a reasonable estimator of per-
formance over unseen test data, we can evaluate this more rigorously by measuring
the Pearson correlation between the cross-validation results for Acc1 and the results
using the same parameters on the held-out test data for both Acc1 and EDM. This
figure is usually 0.99 or more for DUPLIC, with the only exception being for WE-
SCIENCE with 769 sentences of training data, which gives 0.95 for Acc1 and 0.88
for EDM. Thus, the cross-validation estimates are fairly predictive of the results we
can expect over held-out data in the same closely-matched domain using DUPLIC.
This suggests that selecting the best parameter combination from cross-validation
is a potentially useful strategy, at least in terms of predicting relative changes in
accuracy over unseen data. However, as noted above, this correspondence is almost
certainly helped by our data selection method of using random corpus partitions
causing a close match between the training and test corpora.Additionally, this
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Figure 13. Exact match scores for DUPLIC: duplicating the in-domain data set multiple times
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Figure 14. EDMNA F-scores for DUPLIC: duplicating the in-domain data set multiple times

parameter selection does not always produce optimal results over new data, so
there is some room for improvement. On the basis of the test data we have looked
at here, it seems that a weighting around(8, 1) would be a robust performer, so the
cross-validation parameter selection may not be necessary— although it may not
be as applicable for all data.

6. Discussion
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6.1. DOMAIN ADAPTATION STRATEGIES

One of the important aspects of this work to other users of precision grammars
is to suggest a strategy for achieving optimal performance over data in some new
domain, and make a decision about how much effort to expend treebanking, and
how best to make use of treebanked data. On the basis of this work, we would make
the following recommendations:
− Unsurprisingly, out-of-domain data is much better than no data. If there are

insufficient resources to treebankanyin-domain data, you can expect tolerable
parsing accuracy from using only out-of-domain data – the domain adaptation
performance penalty does not make the outputs from the ERG unusable (and
we might expect this to hold for similarly constructed grammars).

− However, the effort required to treebank around 11000 tokens (750–850 sen-
tences for the corpora here) gives substantial gains in accuracy compared to
the benchmark of using only out-of-domain data – these 750 sentences are ex-
tremely valuable. The time requirements for this are modest: using Redwoods
machinery, Zhang and Kordoni (2010) found that it was possible to treebank a
curated WSJ subset at 60 sentences per hour, while Tanaka et al. (2005) found
that Japanese speakers could treebank 50 sentences of Japanese dictionary
definitions per hour. So even with a conservative figure of 40 sentences per
hour, 750 sentences would be under 20 hours of annotation time.

− Even simply concatenating 11000 tokens of in-domain data toexisting train-
ing data gives a good performance boost, but by applying the optimisation
strategy using cross-validation we have discussed for DUPLIC, it is possible
in some corpora to obtain accuracies close to those you wouldexpect if you
had 11000 more training tokens. Without performing the optimisation step,
upweighting the in-domain corpus by a factor of 5-10 provides near-optimal
performance across the corpora we examined.

− If you have resources to treebank 23000 tokens (roughly 1600sentences) in
total, you can achieve additional boosts in performance, although the value is
considerably reduced.

− Beyond 23000 tokens of training data for some domain, the gains in accuracy
per treebanked sentence are more modest, so the effort wouldonly be justified
for more difficult domains or if maximising accuracy is of utmost concern.

6.2. FUTURE WORK

We have presented only indicative results here for two domains which happen to
be available and provide large quantities of training data.Finding out how broadly
applicable they are and whether they extend to other domainsleaves room for fur-
ther research. Building a new custom treebank of perhaps 2000 sentences would
be tractable and help answer that question. Additionally, self-training has shown
small but solid improvements on both biomedical text (McClosky and Charniak,
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2008) and Wikipedia (Honnibal et al., 2009) so could be a useful strategy to eval-
uate, given that it requires no expensive manual annotation. Work in this direction
could also incorporate recent work on unsupervised parse selection (Dridan and
Baldwin, 2010). Another interesting question is whether wecan improve EDM
scores, particularly recall, by training a model using semantic dependencies rather
than syntactic constituents, and whether these improved scores would be reflected
in downstream applications.

Further to this, we have not yet addressed the question of when in the treebank-
ing process it is optimal to build the parse selection model for minimal overall time.
A better parse selection model could possibly reduce treebanking time by requiring
fewer trees to be examined – e.g. from Figure 6a, a domain-adapted model can give
as many correct trees in the top 100 as a non-adapted model gives in the top 500.
It could also increase the chance of having the correct tree in the parse forest, and
this would reduce the need for rejecting trees, which is particularly expensive in
the Redwoods treebanking process as it often requires multiple passes through the
data (Tanaka et al., 2005). It is not clear how important thiseffect would be, but
given this information as well as the time taken to build a model (which is on the
order of a few CPU-hours, depending on training set size), wecould work out the
optimal point in the treebanking process to stop and train a new model to use for the
remaining sentences in the corpus. In future work, we are interested in determining
where this optimal point lies, based on exploration of the impact of parse selection
on determinant selection, and in situ treebanking experiments. Our domain adapta-
tion approach to improving annotation efficiency should be complementary to the
active-learning strategy proposed by Baldridge and Osborne (2003) and Osborne
and Baldridge (2004) for Redwoods-style treebank development, given their focus
on identifying which sentences within a corpus will be most useful to annotate,
rather than on reducing the cost of annotating any given sentence.

7. Conclusion

This paper examined the impact of domain on parse selection accuracy in the con-
text of precision parsing, evaluated across exact match anddependency-based met-
rics. Our findings confirm our intuition that parse selectionaccuracy is significantly
improved by in-domain training data, particularly if we areinterested in returning
a completely correct parse, and in-domain training data is considerably more valu-
able in terms of accuracy obtained from a given number of training sentences.
Additionally, the construction of even small-scale in-domain treebanks, which is
fairly tractable, can considerably improve parse selection accuracy, through com-
bining the in-domain with out-of-domain data. We showed that linear combination
of models from different domains can provide slightly improved performance com-
pared to training from a monolithic concatenated corpus, although without careful
selection of weights, it can also decrease. A better strategy for tuning a model to
a domain with a small training corpus was to duplicate this small corpus some
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integral number of times. A multiplier of 5-10 often produces good results for the
data we have shown here, but we have also shown that the optimal value for this
parameter can be estimated on a case-by-case basis by using cross-validation over
the training corpus, as the values are highly correlated. This finding is highly signif-
icant for both treebanking and downstream applications that use the parser output,
and it suggests a useful strategy for grammar consumers to use when adapting to a
novel domain.
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