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Abstract.

We examine the impact of domain on parse selection accurette context of precision HPSG
parsing using the English Resource Grammar, using twoitigaitorpora and four test corpora and
evaluating using exact tree matches as well as dependescgrEs. In addition to determining the
relative impact of in- vs. cross-domain parse selectioimittg on parser performance, we propose
strategies to avoid cross-domain performance penalty \Winéted in-domain data is available. Our
work supports previous research showing that in-domainitrg data significantly improves parse
selection accuracy, and that it provides greater parseracg than an out-of-domain training corpus
of the same size, but we verify experimentally that this Bdtat a handcrafted grammar, observing
a 10-16% improvement in exact match and 5-6% improvemengperttdency F-score by using a
domain-matched training corpus. We also find it is possibleonsiderably improve parse selection
accuracy through construction of even small-scale in-dortraebanks, and learning of parse se-
lection models over in-domain and out-of-domain data. Blgiadding an 11000-token in-domain
training corpus boosts dependency F-score by 2—3% oveg asiely out-of-domain data. We inves-
tigate more sophisticated strategies for combining data fhese sources to train models: weighted
linear interpolation between the single-domain modeld,teaining a model from the combined data,
optionally duplicating the smaller corpus to give it a higlheighting. The most successful strategy
is training a monolithic model after duplicating the smaderpus, which gives an improvement over
a range of weightings, but we also show that the optimal vialuthese parameters can be estimated
on a case-by-case basis using a cross-validation strafégg.domain-tuning strategy provides a
further performance improvement of up to 2.3% for exact imated 0.9% for dependency F-score
compared to the naive combination strategy using the satae da
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1. Introduction

In recent years there has been a growing awareness of thardbritdeness of
parsers (Gildea, 2001), and a variety of methods for adgmarsers to new do-
mains have been developed (Roark and Bacchiani, 2003gBétzal., 2006; Hara
et al., 2007; Rimell and Clark, 2009; Finkel and Manning, 200Much of this
previous work has looked at parsing with treebank-derivegingnars, and it is not
clear how applicable the results are to the scenario of m@amsith hand-crafted
precision grammars. This paper explores domain adaptititre context of parse
selection for HPSG-based precision grammars, based onnpksk Resource
Grammar (Flickinger, 2000).

Parsing with precision grammars is generally a two-stageqgss: (1) the full
parse yield of the precision grammar is calculated for argitem, often in the
form of a packed forest for efficiency (Oepen and Carroll, 0bhang et al.,
2007); and (2) the individual analyses in the parse forestanked using a dis-
criminative statistical model (“parse selection”). In tt@main of treebank parsing,
the Charniak and Johnson (2005) reranking parser adoptaaogaus strategy,
except that ranking and pruning are incorporated into teedtage, and the second
stage is based on only the top-ranked parses from the figg.sfme differences
in this precision parsing process suggest that domainfgpgccould be a less
pressing issue than has been seen in previous work. For imge ¢hhand-written
precision grammar based on linguistic theory will often adec more generally
applicable facts about language than what can be learnt érgpecific treebank.
Furthermore, McClosky et al. (2006) show that their disanative re-ranker is
less susceptible to domain effects than their generatiksepaand hence we might
expect the precision grammar parsing, which uses a digtaimé model, to show
less domain bias. However, neither of these suppositioms been tested in any
systematic way, and so one of the goals of this work is to egplbe scope of
domain effects in an HPSG precision grammar framework.

Another aspect of this work that differs from previous domadlaptation work
is that our interest in parse selection accuracy is two-fblke previous work,
we are interested in the top-ranked parse being as accusatesaible, but we
are also concerned with how parse ranking feeds into thbaréeng process. The
Redwoods treebanks associated with the HPSG-based ERglsglurce Grammar,
as described in Section 2.1, are built by parsing senteandghen having an anno-
tator select the correct tree from amongstitHeest analyses. Annotation efficiency
can be improved by using a lower which is only possible if the parse selection is
accurate enough to reliably rank the correct parse witlantthpn. Hence, in order
to build new treebanks in new domains, we need a statistiodehthat works in
different domains, or a method to easily adapt a model fonévedomain, without
requiring a large treebank for the particular domain.

The primary contributions of this paper are: (a) explomtif the relative ef-
fects of domain on parse selection accuracy for a precigsiammar of HPSG; (b)
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4 MACKINLAY, DRIDAN, FLICKINGER AND BALDWIN

investigation of the most effective and robust methods &ngismall amounts of
in-domain training data. This has been made possible byettent creation of mul-
tiple ERG treebanks of sufficient size, and spanning comguhekvariable domains
enabling us to explore these issues systematically for thetiine for precision

HPSG parsing. We additionally introduce a methodology foargitatively and

qualitatively comparing different corpora for lexico-sgatic divergences.

2. Background
2.1. REDWOODSSTYLE TREEBANKING

The annotated corpora used in this study form the Redwoegbank (Oepen
et al., 2004), which has been updated for the October 20Kdoveof the English
Resource Grammar (ERG: Copestake and Flickinger (200@kifder (2000),
Flickinger (2011)). In brief, the treebank is constructgdparsing each sentence
in the corpus using the ERG, automatically identifying (opthe 500 most likely
parses, then manually identifying the correct parse udisgriminants(Carter,
1997; Oepen et al., 2002) to allow or disallow constructipostulated by the
grammar for a particular sentence. The discriminants usédel Redwoods tree-
bank consist of the 200 unary and binary syntactic and lexidas of the ERG,
along with the lexical entries themselves, which togetbamfthe relevant sources
of ambiguity in each parse forest. When a new version of tlzangrar is re-
leased, the recorded discriminant-level annotations lersdmi-automatic updat-
ing of the treebank, requiring manual intervention only fiesv sources of ambi-
guity introduced by changes to the grammar. Parse rankidgtermined using a
maximum entropy model trained on the previous version ofttbebank. Similar
discriminant-based treebank annotation has also beerogeatpin the development
of the Alpino treebank for Dutch (Bouma et al., 2001), and@@banks built using
the LFG Parsebanker (Rosén et al., 2009).

This grammar-centric method of treebank constructionedsffin a couple of
fundamental aspects to that used for other widely usedardaisuch as the Penn
Treebank for English (Marcus et al., 1993), or the TIGERhes&k for German
(Brants et al., 2002). The dynamic nature of the treebanknmézat as linguis-
tic analysis improves and matures, the treebank can beegdtatreflect modern
analyses, without expensive full re-annotation. Furtleeemthe treebanking pro-
cess supplies a wealth of negative training data (from tejealternative analyses
licensed by the grammar) which is used to build the discrative parse selection
models.

2.2. DOMAIN ADAPTATION FOR PARSE SELECTION

Itis relatively easy to motivate the need for domain adémaif we wish to utilise
the outputs of a given parser in some application, it is dfftencase that our target
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5

domain differs from that for which the parser was originalgveloped, leading to
a higher error rate in the target domain.

English-language parsers are often trained on the Penrdmkebut unsur-
prisingly the domain of financial newswire text is not apprag for many NLP
applications. Gildea (2001) found that training a parsethenWSJ corpus rather
than the Brown corpus resulted in significantly worse pentomce over Brown
corpus test data, reporting a 3.5% drap F-score over labelled constituetits
from 84.1%. Gildea uses Model 1 of Collins (1997) to meastanges in parser
performance, but other work finds similar penalties witleralative parsers and
domains as described below.

Some work goes further, also investigating strategiesvoiding these perfor-
mance penalties when moving across domains. Roark and Bac¢2003) show
that using a technique known as maximarposterioriestimation on the produc-
tions in a probabilistic context-free grammar, it is pobksiio make more efficient
use of in-domain and out-of-domain training data, givingelded constituent F-
score improvements of up to 2.5% over using only in-domata déoen the amount
of in-domain training is very limited (from a baseline of B%), arguing that the
conclusion of Gildea (2001) that out-of-domain data hay Vitle value, was
premature. Honnibal et al. (2009) found that the C&C par&dark and Curran,
2007b) trained on WSJ text gives a 4.3% lower F-score (bas€eilc dependen-
cies) when tested on Wikipedia data compared to held-out &é&J (which had
an F-score of 85.1%), but that self-training the superitagggomponent on parsed
in-domain data reduced this penalty to 3.8%.

Plank and van Noord (2008) investigate domain adaptatiarpafser trained on
the Alpino Dutch treebank (Van der Beek et al., 2002) usingliary distributions
by augmenting the model trained from a small quantity of @mdin data, with a
real-valued feature which takes the value of the negatigarlthm of the condi-
tional probability of the sentence according to the largérai-domain model. This
approach achieves performance between 1% worse and 4% thettea model
trained by simply combining the in-domain and out-of-dom@ata, improving the
performance over a purely in-domain model by up to 1%, aljhoover most test
corpora there is only a small increase or decrease, indgc#tiat integrating out-
of-domain training data is difficult in this case. An altetima strategy of creating
a model with only two features — the conditional probalgtirom the in-domain
and out-of-domain models — yields more modest improvemeihéound 0.6%,
but more reliably.

* All percentage changes quoted in this section are absolute.

** The precision, recall and F-score figures in this work and dieacribed below can be broadly
grouped into two categories: (1) constituent-based etialudoosely or exactly following PARSE-
VAL (Black et al., 1991), which requires parse tree constitis to have the same label and token
span as the gold-standard; and (2) dependency-based temal(@iscussed more in Section 3.3),
which requires matching dependency tuples between tokehe sentence. These metrics produce
different results, and even the relative changes shouldaobnsidered directly comparable. Results
are often reported for only one of the two, however.
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6 MACKINLAY, DRIDAN, FLICKINGER AND BALDWIN

For adapting WSJ-trained parsers into the biomedical don@egg and Shep-
herd (2005) investigate the performance of three treebandeps (Collins, 1999;
Charniak, 2000; Bikel, 2002) over the GENIA treebank (Ohtalg 2002), finding
that labelled constituent-based F-scores are 8-9% lovaerttiose obtained over
WSJ data, and that these errors can be slightly amelioragtedrbining the out-
puts of different parsers in various ways. Lease and Cha(2i@05) observe that
PARSEVAL F-score from the Charniak parser trained on the W&iver by 13%
over GENIA and 4% over the Brown corpus, compared with pgrérdomain
data which gets an F-score of 89.5%. They show that usingpghdbmain-specific
resources such as a domain-specific POS tagger and nantéssdraim a medical
thesaurus avoids some of the cross-domain training pesfioce penalty, increas-
ing the GENIA F-score by 3.3%. A somewhat similar conclusisrfound by
Rimell and Clark (2009) using the C&C parser, then mappirggharser output
to the grammatical relations (somewhat like dependenciegje Biolnfer corpus
(Pyysalo et al., 2007) to calculate F-score. Using a dorspétific POS-tagger,
and to a lesser extent a domain-tuned supertagger for the |&@sal categories,
improves F-score by 5.5% from the baseline of 76.0%. McGlaakd Charniak
(2008) show that it is possible to adapt the Charniak pasdha biomedical
domain without a domain-specific treebank using self-ingini.e. learning from
automatically created parser output, thus improving theelide F-score of 80.4%
over the GENIA corpus by 3.9%. In the HPSG space, Hara et BD5R also
working on the GENIA corpus, show that it is possible to augtreelarger log-
linear model trained on the WSJ with carefully selecteduiesst derived from a
smaller in-domain treebank. They report a 1.6% improveniremonstituent F-
score compared to a baseline of 85.1% using a WSJ model amlyaad.5%
improvement over simply retraining a hew model from the corath WSJ and
GENIA training data, while greatly reducing the traininmé. In later work, Hara
et al. (2007) show that simply retraining the lexical enteatiires (rather than
the grammatical ones) could yield further improvementsrotiad 2% over this
method.

3. Resources
3.1. CORPORA

At present, there are two corpora available for the ERG whighlarge enough
individually for training a parse selection model.

First, we use the LOGON corpus (Oepen et al., 2004), a callect English
translations of Norwegian hiking texts from the LOGON pubjét is freely avail-
able for download, and contains 8,550 sentences which heagtlg one gold
standard tree annotated in the treebanke divided these sentences into training
and development data. The translations in LOGON includerradtive English

* This omits six small sections ‘jhu’, ‘jhk’, ‘psu’, ‘psk’, gu’ and ‘tgk’.
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translations of each source sentence from up to three ifféranslators, although
direct repetitions are very rare. To ensure that the siitidarbetween these trans-
lations did not interfere with the results, we placed edeivatranslations in the
same section, so that two translations of the same senteoakl wever occur
between both training and test corpora. The ERG was extgsileveloped for
the LOGON project (particularly in terms of lexicon) so theugmar may show
a slight bias towards this particular corpus as it was inithlituned for it, and as
such, we would expect the corpus to be easier for the ERG s@par

Second, we use the more recent WeScience corpus (Ytrestizl 2009), a set
of Wikipedia articles related to computational linguistiavhich is, again, freely
downloadable. With 9,167 sentences with a single goldestahtree, it is slightly
larger than the LOGON corpus in the number of sentences, andsbmewhat
longer average sentence length. Crucially for our purpasesin a very different
domain, and beyond both corpora exhibiting fairly formaltten prose, there is
little similarity in content (we examine this in more detail Section 3.1.1). We
use only 7,631 of those sentences, again dividing them intaiaing set and a
development set, preserving the remainder for future work.

We are able to use LOGON and WeScience as both training andetiesets to
explore in- and cross-domain effects. We additionally expent with a smaller-
size corpus as test data only: the Cathedral and Bazaars;ogouopen-source
software development. This treebanked corpus is alsodeduwvith the ERG dis-
tribution, and as a single-author text, could be expectdxktslightly more homo-
geneous than the other corpora. Finally, we use one moreigavhich is not yet
publicly available, labelled ‘robotl1’, which consists cdimscripts of several spoken
dialogues between two humans, one of whom is simulating at radilaborating
in a coloured-block-hunting task (Flickinger et al., 200893 natural dialogue, the
utterances in this corpus are on average relatively shattfahof disfluencies,
including many which are not full sentences. This makes iteqdifferent to the
carefully edited written prose that comprises the othezdhrorpora we use. The
various corpora are described in Table I.

While we are framing our work here as a problem of “domain&atdtion, we
have not actually defined what the term means. It is surgfigidifficult to find
a satisfying definition for this somewhat nebulous conckgiarmally, a domain
can be considered to be a homogeneous topic paired with iayartregister of
language. The focused content of a domain corpus tendsdddeskewed lexical
and constructional distributions, which have a direct intjpa parsing as the skew
in one domain tends to differ significantly from that in arethWe return to explore
the question of just how different our corpora are in Sec8dn2, but in general
we consider each corpus we use to consist of a single domain.

*http://ww. catb.org/esr/witings/cathedral - bazaar (authored by Eric
Raymond).
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8 MACKINLAY, DRIDAN, FLICKINGER AND BALDWIN

Table I. Corpora we use for our experiments and example sentengasfioh.

Corpus Description Example

WeScience Wikipedia articles There are a number of competitions and

(WESC) prizes to promote research in artificial in-
telligence.

LOGON Hiking brochures The bird life is typical of an area of this

(LOG) kind.

Cathedral and Essay on Linux | had been preaching the Unix gospel of

Bazaar (C&B) development small tools, rapid prototyping and evolu-
tionary programming for years.

Robotl Transcribed inter- okay | walked through the hallway um

(ROBOT1) active dialogue turned right

Histogram of sentence lengths

0.6 .
Il \WeScience

0.5¢ I LOGON
] C&B
0.4} 1 Robotl

0.3f

Relative proportion of sentences

0 5 10 15 20 25 30 35 40
Sentence Length (tokens)

Figure 1. Histogram of sentence lengths for the corpora

3.1.1. Corpus Characteristics

In Table Il we give broad statistics such as counts of tokaem the tokenisation
in the gold-standard ERG output) and types, including thebi&h are outside
the ERG's lexicon. VESCIENCE stands out as having a large vocabulary, as well
as a high proportion of unknown types, with 43% of types alatghe lexicon,
which is fairly unsurprising given the nature of its contdt© GON has a lower
proportion at only 9%, which may also reflect the history of tirammar — as
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Table Il. Corpora we use for our experiments showing numbers of “atdid’ sentences which have
a single gold parse (which are the only sentences used ia thggriments), average sentence length
(in tokens), average ambiguity on test set (number of pgmsmhiced per sentence with each sentence
capped at 500 parses, approximating, but underestiméatiadifficulty of the parse selection problem),
and the top-500 random baseline calculated as the averalgakplity of randomly selecting the correct
parse for each sentence from this top 500 according to ttse E@lection model used in treebanking
(which is not truly random). To show the effects of the to}5mitoff, we also show the number of
validated sentences and average ambiguity over only ssggemith < 500 parses. Also shown are
statistics for various interesting tokens and constitsiebbth per-sentence and per-token (in square
brackets). O.0.V. denotes ‘out-of-vocabulary’ for theidex of the ‘1010’ version of the ERG which
we use here.

WESCIENCE LOGON C&B ROBOTL
Validated Sentences 7631 8550 567 1303
— training 6149 6823 0 768
—test 1482 1727 567 535
Parses/Sent 260.5 229.5 304.0 83.5
Top-500 random (exact) 13.3% 13.7% 7.8% 28.0%
Top-500 random (top 10) 35.3% 37.5% 24.5% 69.2%
Valid'd Sent,< 500 parses 4173 5338 265 1169
Parses/Sent. 500 parses 62.1 66.8 80.7 35.8
"bed':l"yb"e'é .............................................. CReEs T e R Soa
0.0.V. Word Types 5931 744 306 15
Tokens 15.02[1.000] 13.63[1.000] 18.67[1.000] 5.82[DJ00
0.0.V. Tokens 2.02[0.070] 1.49[0.025] 1.66[0.039] 1.1D[B]
Construction Rules 20.74[1.380] 18.85[1.383] 25.72[8]378.28[1.421]
Lexical Rules 5.78[0.382] 5.13[0.372] 6.12[0.322] 2.34M4b]
"'Nédh"éi)'hﬁbédﬁdé ____________________ i;'idu['(')".'('j'?é'] _________ '(')'.'éé"[d'.diié] ......... i'.'i'd'['d.'déé']' ...... 0(19:{1]
Co-ordination 0.65[0.043] 0.67[0.049] 0.56[0.030] 0.09015]
Passives 0.54[0.036] 0.27[0.020] 0.28[0.015] 0.02[0]004

noted above, it was extensively expanded for the LOGON ptog® the lexicon
is somewhat tuned to match that corpus. C&B, at only 11%, sitewvs a fairly
small percentage of unknown types, which is perhaps infeeiy having only a
single author. The very small vocabularydBoTl has, perhaps unsurprisingly,
an even lower proportion unknown-word proportion of 2.3%haugh this could
also be partly due to grammar tuning. As we would expect, ardgken basis, the
number of unknown words is much smaller, and the relativieidinces between
the corpora also decrease, ranging from 0.3% of tokengd@oTl to 7.0% for
WESCIENCE.
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10 MACKINLAY, DRIDAN, FLICKINGER AND BALDWIN

We also list the ambiguity of the sentences in terms of thebmrmof parses
postulated by the ERG (counting at most 500 parses per sentand hence un-
derestimating), giving an idea of how difficult the parsesstbn task is beyond
the rough estimates we can make on the basis of sentencé.leagtoTl again
stands out as being particularly different in this regarith ¥ewer than 100 per sen-
tence, while LOGON is intermediate in difficulty comparedthe progressively
more ambiguous sentences offBCIENCE and C&B, in line with the increased
sentence lengths in these corpora.

We show some more details of sentence length in the histogr&igure 1. The
distributions are mostly unsurprising, with the longelet distribution for C&B
that we would expect for the longer average sentence lefiphhmost noticeable
value is the unexpectedly large value in the 0-5 range fordée8e, which is
likely a reflection of the frequent occurrence of short éettitles in this corpus.

Table Il also shows statistics on the applications of ER@gtb give an idea of
the relative complexities of the parse trees, separatethigsentence length. We
show statistics on a per-sentence as well as a per-tokesy baghe latter attempts
to factor out the effects of sentence length on the complextie ERG rules can
be divided up into “construction rules”, which correspondihary or binary rules
accounting for syntactic phenomena, and “lexical ruleshjolv can be roughly
equated to morphological and morphosyntactic phenomeala as inflectiorr.
We show a crude comparison of the number of applications edetlfules in the
gold-standard parse trees in the corpora. Constructias e not meaningfully
different on a per-token level, suggesting that perhaper aftaling for sentence
length, the corpora have similar levels of syntactic coxipleHowever, there are
substantially more applications of lexical rules ire8cIENCE and LOGON than
in C&B and particularlyroBOTL. Some explanations for this are discussed in
Section 3.1.2.

We also show some finer-grained statistics, intended toigeomore insight
into the distribution of some selected interesting syitgatenomena which show
different distributions between the corpora.E8CIENCE has a much higher in-
cidence of the passive voice,with 0.036 instances per token indicating almost
twice as many occurrences per token than the nearest coonde® GON with
0.020. This is probably in line with what we would expect giviae nature of
the different domains, with WSCIENCE containing more formal academic-style
prose, rather than the slightly more conversational stjfle@GON. C&B has
a lower incidence still — again the style is more conversatioand the essay is
written from a first-person perspectiveoBOTL has by far the lowest, but this is
just what we would expect for spoken interactive dialogue.

* A third class of rules relates to bookkeeping for punctugtiswhich is linguistically less
interesting and ignored here.

** This was determined by counting instances of grammar ruleshvare subtypes oBA-
SIC_PASSIVE VERB_LR.
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The relative differences between the corpora of frequecyon compounds
and coordinatioh are smaller, but still noticeable. The technical subjecttenaf
WESCIENCE may patrtially account for the greater frequency of noun coumgls.
The coordination differences are not as easy to explairexor their infrequent
occurrence in the simpleoBOTL sentences.

3.1.2. Inter-corpus comparisons

It is clear that the corpora have different characteristiceerms of broad statis-
tical counts, but it may also be informative to directly carg pairs of corpora
to measure how alike they are in a more statistically-gredndiay. While we
have only briefly addressed the question of exactly whattitatess a domain, a
statistical measure of corpus similarity should partigérve as a proxy for this.
Counting how many words occur in only one of the corpora givesome idea
of the difference; however, this discards most of the distional information. To
make a more thorough comparison, we follow the technique espbor et al.
(2009) in using relative entropy to compare pairs of corperhich we briefly
describe here.

We choose some vocabularywhich is a subset of the union of the vocabularies
of the two corpora, and we then construct probability distibns P, and P, using
maximum likelihood estimation and add-one smoothing fathegorpus. We can
calculate the relative entropy over the words in that votaluusing corpus 1
against corpus 2 as follows:

P1 (U))
PQ(U))

D(Py||P2) = ) Pi(w)log,
weV

This gives us a way of quantifying how different the disttibns of words
are between corpora. Also following Verspoor et al., we skalues for different
frequency cutoffs after sorting the vocabulary by combiftequency between the
two corpora.

However, we may also be interested in the words which mashgly charac-
terise the differences between the corpora. Rayson anddedg000) outline a
way to achieve this using log-likelihood. Given two corp@righ total number of
tokensT; and7;, we can calculate the expected frequency count for a phaticu
word with observed counts andts in each corpus as follows:

(t1 +t2) (t1 +t2)

B =T1—F+ FEr =To——"%
e P A

From this, we can calculate the log-likelihood for the gaar word:

t t
L=2 <t1 10g2 E—l + to 10g2 E—2>
1 2

t These are subtypes BASIC_N_N_CMPND_PHRandBASIC_COORD_PHRrespectively.
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12 MACKINLAY, DRIDAN, FLICKINGER AND BALDWIN

If we sort the log-likelihood values for each word by deciegdog-likelihood
values, those items at the top of the list are those which ast different between
the corpora and thus in one view characterise the diffeseheeveen the corpora.

In our work, we are also interested in the distributions eftagtic constructions
between the corpora to see whether the differences extgodte¢he vocabularies.
We can achieve a coarse version of this using a variant of tird-vased proce-
dures described above. We take advantage of the fact thatigmin the ERG
are named according to their syntactic function. The granmraa some 200 con-
struction rules and lexical rules to account for differenepomena. For example,
three subject-head rules account for the subject of a sem@ttaching to the verb
phrase in different circumstances, while twelve differemes are used for different
kinds of noun-compounding. Like lexical items, these ruiese widely different
relative frequencies of use from one another, and we alsecgtpese rules may
have different frequencies of usage between differentararBy replacing words
in the procedures described above with rule names, so thatatabulary is the
complete inventory of available rules, we can calculatatiet entropy figures and
log-likelihood figures across lexical rules, constructrafes, or a combination of
both. In fact Rayson and Garside (2000) note that their phargecould be applied
to other entities such as POS-tags, so applying it to syinteghstruction names is
within the spirit of the original method.

We could possibly improve over aggregating solely by rulmea- some very
general rules such as the head-complement rules can applyMde range of
lexical heads with complement slots, including preposgioverbs, adjectives and
nouns, and we are ignoring this potentially interestingtinfation. Nonetheless,
this fairly simple procedure provides a concise indicatibithe relative syntactic
similarity between the corpora.

We show the results for log-likelihood and relative entr@mainst subsets of
each training corpus in Table lll, also showing the relatvdropy in graphical
format in Figure 2. First, examining the words with the gesatlog-likelihood
differences, we can see some instructive differences lestwlee corpora (noting
that items prefixed with-’ (e.g. ‘-language_n1’) are more frequent in the refer-
ence corpus, not the test corpus). C&B amBOTl are characterised by much
more frequent use of the pronourhan the other corpora, which is predictable as
C&B is a conversational first-person essay aasOT1 is a transcription of dialog.
The second-person pronoyauis somewhat characteristic of all the corpora (less
strongly for C&B) compared to \WSCIENCE, again indicative of the styles we
would expect. The other more specific vocabulary items @@ @karly character-
istic of the domain — it is unsurprising that C&B talks abbazaarsandsoftware
LOGON talks aboutrails androuteswhile WEScCIENCE talks aboutanguage

The relative entropy differences between the in-domainp=omeon versus out-
of-domain comparison are striking. The in-domain relagmropy is 0.03 or less
for the top-100 words and 0.25 or less for the top-1000, w686 or more and
0.96 or more for the respective out-of-domain figures. leipps not so surprising
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Table Ill. Test corpora compared with reference training corpora3igshtence subset of &Y
SCIENCE; 1710-sentence subset of LOGON). The in-domain test setgidifferent subset of
the same source corpus) is labelled in bold. Relative eptidghown for the reference corpus
against test corpus and then vice versa, and uses add-orethémgo only examining items
with at least 5 occurrences (10 for grammatical rules) indbmbination of the corpus pair.
Additionally there is a cutoff by rank in combined frequenisy for lexical items (100 or 1000
words). Div(ergen)t rules and words are those with the hgheg-likelihood (which is shown)
against the combined distribution, with the item prefixethwt’ if the highest frequency is in

the reference distribution.

Ref: WESC (train) WESCIENCE LOGON Cc&B ROBOTL
. "'I")'/b'é'é' L oG g g S
Tokens in ref 86.7% 63.7% 78.6% 63.3%
"'Féé'l'—'léﬁi”(féb'—'i'(')'d)m'6'.'(-)'(')'/'(')'.'(')5 ................. e s e Comai
Rel-Ent (Top-1k) 0.11/0.14 2.09/2.70 0.96/1.61 1.71/7.45
"Divtlexemes T 457.0:-language_n1463.2:i 836.4: okay_s_adv
354.7: you 185.7:—language_n1794.4: box_nl
251.6: trail_n1 128.5: bazaar_nl  511.4:you
231.5: trip_nl 89.7: project_nl 367.5:1i
199.3: route_n1l 88.5: you 363.0: yeah_root_pre
"'Iié'l'-'lé'rii”(é'li”r'L'J'Iééjw(')':di'/'(')'.'(')'i .................. T R G agicE T
Rel-Ent (constr.)  0.01/0.01 0.29/0.31 0.28/0.28 1.993.2
Rel-Ent (lex rules) 0.00/0.00 0.46/0.42 0.19/0.23 0.980.
Ref: LOG (train) WESCIENCE LOGON C&B ROBOTL
. 'fy'b-é'é' e S o S D L e
Tokens in ref 59.2% 87.6% 65.6% 69.9%
"'Iié'l'-'lé'rii”("l"bb'-ul'(')'(')')m'i'.éé'/'(')'.é"l' ................. TN S T T Towss
Rel-Ent (Top-1k) 2.72/2.01 0.25/0.24 2.11/2.11 1.76/6.28
"Divtlexemes ~ 356.9:language_ni T s666:1 820.9: okay_s_adv
279.4:—you 168.3: project_n1l 779.6: box_n1
234.0:—trail_n1 155.1: linux_n1 373.2:i
228.2:—trip_nl 151.8: software_nl 356.2: yeah_root_pre
208.7:—route_n1l 132.8:—trail_n1 300.5: room_n1
".l.:é-e.i-—.léhi”(é-".I.’-l,.liéé)”“d:éé-/dézl .................. i G T
Rel-Ent (constr.)  0.32/0.29 0.01/0.02 0.40/0.35 1.882.9
Rel-Ent (lex rules) 0.47/0.50 0.01/0.01 0.53/0.59 0.4310.

that we should see low relative entropy on a per-word badisinva domain, and
high relative entropy on a word-by-word basis compared teiotorpora with
different subject matter and register, where we expect alyitifferent vocabulary
(as the figures for token-overlap with the reference corpdate).

Itis more interesting that the corpora have widely diffémistributions of syn-
tactic constructions and lexical rule applications, evenugh these differences are
much less dramatic in terms of bits of entropy, with out-ofrdhin corpora having
as few as 0.19 bits of relative entropy compared to in-donitia not necessarily
clear that this should be the case. While we might suspettatiiéalogue-based
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14 MACKINLAY, DRIDAN, FLICKINGER AND BALDWIN

_Relative Entropy of test corpora vs training corpora

Reference Corpus
7| WeSc (train)
[ LOGON (train)

Relative Entropy (bits)

Figure 2. Graphical representation of relative entropy of the tespa@ against the two
reference corpora (subset of the information in Table III)

corpus likeroBoTl would have a higher percentage of imperative construgtion
for example, we could not know whether this would have a eatite impact
on the overall distribution. In factRoBoTl stands out as being very different
syntactically, but we can also see some other noticeablerelifces between the
corpora. C&B seems to be most similar tceBCIENCE in terms of syntax as well
as vocabulary.

Examining the details of the rules that characterise trez-odrpus differences,
they are less easy to explain than the lexical items, evem kvibwledge of the
meanings of the rules within the ERG internalse®¢ 1ENCE has a disproportion-
ately high number of occurrencestobN_BNP_cC, corresponding to noun phrases
headed by common nouns with no determiners sucalgsithms possibly due
to article titles and factual, general subject matter. Me@dle LOGON has a pre-
ponderance ofiDN_BNP-PN_C instances, denoting bare noun phrases with proper
nouns, likeJotunheimen(a region in Norway), which is probably related to the
large number of place names mentioned. Another unusuatuént construction
in LOGON isNP_ADV _c, for adverbial noun phrases likeerein They came here
The discrepancy between proper noun usage may also padigdlain the much
higher prevalence ofiDN-OPTCMP_C in WESCIENCE, which is used for com-
mon nouns with optional complements. A cursory examinatibthe parse trees
suggests that another contributing factor is the fact tbaha with optional com-
plements are often nominalisations likeplementationand such constructions
seem particularly frequent in the technical subject maitt&/ESCIENCE.
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From all of this, we can see some reasons why a parse seleatidal trained
in one domain may perform poorly over a second domain. Not aré there dif-
ferences in distributions of lexical items to take into aoup there are also widely
different distributions of rule applications, both leXiead syntactic. As the parse
selection models we use take into account rule names of rasketheir ancestors
as well as individual lexical entries, all of this could bepiontant.

3.2. EXACT MATCH EVALUATION

As we mentioned in the introduction, one of the differencesMeen this work
and previous work is the different motivation for domain pai@dion: in addition to
wanting the best top-ranked parse possible, we also intenskt the parser to build
treebankgor new domains.

Previous work using the ERG and related DELPH-IN grammassgesaerally
reported results on the basis of exact match of the top pamseagt match within
the top-10 parses (Zhang et al., 2007). One reason for thye usdfaexact match
accuracy is to reflect the utility of a ranking model for tragking.

In Redwoods-style treebanking (Oepen et al., 2004), theepselection model
is crucial for two reasons. Firstly, a correct parse closw tt the top of the ranking
enables the treebanker to quickly select it as the golddataiparse tree. Secondly,
the treebanking process requires the selection of someadtitoff for the number
of highest-ranked parses to present to the treebankerhvidiigsually set to 500.
This number decides the balance between tractability itréedanking process for
the treebanker (and, to a lesser extent, the underlying imargf), and complete-
ness in terms of not excluding correct but low-ranked patsesitably, there will
be a small amount of ‘leakage’ — correct parses which areardtad high enough
to be considered — but we can reduce this while holding thebsurof parses
constant by providing a better parse selection model. Stterbparse selection
models enable treebanks to be built more quickly and withtgrecoverage.

We use notation Acg to denote the exact gold-standard tree being found some-
where in the top¥ parses. In terms of treebanking utility, Agg tells us whether
the correct analysis is available to the treebanker in tpe5@0 analyses; con-
versely, it is possible to calculate the averayerequired to achieve, say, 80%
exact match parsing accuracy. However, these values aemgixp to calculate for
dozens of different parser configurations. Following Zhabgl. (2007), we use
less-expensive Agc(primarily) or Acc, which we argue act as a as a proxy for
Accsgo; this is evaluated in Section 5.1. Both of the figures alsouglimportant
information about the treebanking utility of the parse st model: whether the
target parse is ranked highest, or occurs within a highiked manageable group
of trees.
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3.3. EDM EVALUATION

Granular evaluation metrics of the type generally repartaxther parsing research
are complementary to the exact match metric, in that ratfeer évaluating whether
the top parse is completely correct, they indicate how clbedop parse is to the
gold standard. There is currently no standard granulauatiah metric suitable for
evaluating the detailed output of the PET parser. While iy s@em that existing
metrics could be used, hence allowing direct comparisagntework from Clark
and Curran (2007a) and Miyao et al. (2007) has shown that imgpmetween
different parser representations is a far from trivial tddkreover, since our main
purpose in this work is to measure effects of domain on pastextion within
one formalism, we are more interested in seeing how close ameget to the
analysis that our parser aims to produce than in directlypaosing with parsers
with different output. For that reason, building on the woflKaplan et al. (2004),
Briscoe and Carroll (2006), and Plank and van Noord (2008 alia, we adopt
a dependency tuple-based evaluation method, but in a fammahat is native to
the ERG and also an interestingly large family of DELPH-IMmmars couched
in the HPSG formalism.

The goal of the PET parser is to extract meaning from text,\@adonsider
three classes of information that contribute to meaning:

class 1. core argument structure, either surface or deep structure
class 2. predicate information, such as the lemma, POS and sense

class 3: properties of events and entities, such as tense, numbeyesuutr

Many existing dependency-based evaluation metrics usergedical relations
to describeclass 1 information. That is, the dependencies are usually lalies |
SuBJ oBJandmoD (or ADJUNCT). While these grammatical functions allow us
to describe the surface level linguistic structure, theyndb make explicit the
underlying deep structure of any utterance. This deeptsieiclescribes semantic
rather than syntactic arguments and can be seen in resa@ucksas the Prague
Dependency Treebank (Bohmova et al., 2003), the Redwoeébank (Oepen
et al., 2004) and PropBank (Kingsbury et al., 2002). Usirg semantic argument
structure for parser evaluation not only gets closer to theah sentence meaning
that we are trying to extract, but is potentially more geheas there is generally
wider agreement on semantic arguments than on, for examplether the main
verb depends on the auxiliary, or vice versa. Minimal ReoarSemantics (MRS:
Copestake et al. (2005)) is one formalism (and the one wirsdchative to the
ERG) that allows us to describe this semantic argumenttsirejcand our granular
evaluation metric is based on this formalism.

3.3.1. Minimal Recursion Semantics

Minimal Recursion Semantics (MRS) is a flat semantic foramalthat represents
semantics with a bag @lementary predicationsnd a list of scopal constraints. An
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(hy,
hs:pron<0:2>(ARGO X 4{PERS 3, NUM sg, GEND m, PRONTYPE std_pron}),
hs:pronoun_g<0:2>(ARGO X4, RSTR hg, BODY h7),
hs:_persuade_v_of<3:12>(ARGO e2{SF prop, TENSE past, MOOD indicative },
ARG1 X4, ARG2 X190, ARG3 hg)
hy1:proper_g<13:16>(ARGO X 19{PERS 3, NUM sg}, RSTR h2, BODY h;3),
h,4:named<13:16>(ARGO X 19, CARG Kim),

hys:_leave_v_1<20:26>(ARGO €16{SF p-or-q, TENSE untensed, MOOD indicative }
ARG1 X 10, ARG2 Py7)

{h12 =4 h14, hg =4 hy5,hg =4 h3 })
Figure 3. MRS representation dfle persuaded Kim to leave.

elementary predication can be directly related to word$intext, or can reflect

a grammatical construction, such as compounding. Eacheslamy predication
has a relation name, a label and an index (designakesb). Arguments of a
predication are represented by ‘bleache&Gn roles (which are to be semanti-
cally interpreted for classes of predicates). Figure 3 shihwe MRS representing
the semantic analysis dfle persuaded Kim to leavéiere we see six elemen-
tary predications, four with text referents and two as amsion-specific covert
quantifiers. TheARG1, ARG2 andARG3 roles of the verbal predicates describe the
predicate—argument relations and demonstrate co-indexa¢tween tharaG2 of
persuadeand theaRG1 of leave Entities and events carry properties such as gender
or tense which are attached to their index variables. Anuat@n scheme based
on MRS therefore allows us to evaluatass 1 information using the roleg]ass 2
information through predicate names atdss 3 information from the properties
of the index variables.

3.3.2. Elementary Dependencies

The metric we use is Elementary Dependency Match (EDM: @rid2009)),
based on elements that Oepen and Lgnning (2006) defined aseliky De-
pendencies (EDs), a variable-free reduction of MRS whictiugles scopal in-
formation. We differ from their definition by using sub-sigi character spans (e.g.
<3:12>) instead of predicate namesérsuade_v_of) to represent nodes in the de-
pendency graph. In keeping with our information classas alows us to separate
the evaluation oflass 2 information fromclass 1. Our EDM metric hence consists
of three types of triples which align with the three inforinatclasses:

ARGS. span; role; spany
NAMES: span; NAME relation;
PROPS  span; property; valuej
In these formsyelation is the predicate name of an elementary predication
from the MRS,role is an argument label such agG1, property refers to an

attribute such asENSE or GEND andwalue is an appropriate instantiation for the
respective property. Figure 4 shows the triples producethioMRS in Figure 3.
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The text segment associated with each character span isnsloowlustrative
purposes, and is not part of the triple.

“‘He” <0:2> ARGO <0:2> *“He”
“persuaded” <3:12> ARG1 <0:2> “He”
“persuaded” <3:12> ARG2 <13:16>“Kim”
“persuaded” <3:12> ARG3 <20:26>“leave.”

‘Kim” <13:16> ARGO <13:16>"“Kim”
“leave.” <20:26> ARGL <13:16>"“Kim”

“‘He" <0:2> NAME pronoun_q
“He” <0:2> NAME pron
“persuaded” <3:12> NAME _persuade_v_of
“Kim” <13:16> NAME proper_q
“Kim” <13:16> NAME named
“leave.” <20:26> NAME _leave v_1

“He” <0:2> GEND m
“‘He" <0:2> NuUM sg
“‘He” <0:2> PERS 3
“He" <0:2> PRONTYPEStd_pron
“persuaded” <3:12> MoOD indicative
“persuaded” <3:12> SF prop
“persuaded” <3:12> TENSE past
“Kim” <13:16> NuM sg
‘Kim” <13:16> PERS 3
“leave.” <20:26> MOOD indicative
“leave.” <20:26> SF p-or-q
“leave.” <20:26> TENSE untensed

Figure 4. Gold triples forHe persuaded Kim to leave.

During evaluation, we compare the triples from the gold déad analysis with
those ranked top by the parser, and calculate precisioall @t F-score across
all triples, as well as across the three separate triplestfypeME, ARG andPROB.

3.3.3. Analysis

The full EDM metric weights each triple equally, which mayt be ideal for all sce-
narios. The division by triple type gives one alternativewithat provides a more
complete picture of what sort of mistakes are being made byérser, but other
weightings are also possible. To get some idea of the numasrge of the different
EDM configurations, we parsed sections of theS¢IENCEand LOGON corpora
using the English Resource Grammar (ERG: Flickinger (200@nking against
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Comparison of metrics on WeSc corpus Comparison of metrics on LOGON corpus
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(a) WESCIENCE (b) LOGON

Figure 5. Comparison of variants of the EDM metric

parse selection models trained on different quantities-@fdmain data (this idea
is developed further in Section 5.1). Figure 5 shows thdiveldifferences between
five configurations: all triples together (ERM), the NAME, ARG andPROPtriple
types separately (EDN EDM, and EDMs, respectively) and measuring just the
NAME andARG types together (EDM, ). This last configuration produces a metric
broadly similar to the CCG dependencies used by Clark anda@y{2007b) and
also to the predicate argument structures produced by th#JEMrser (Miyao
and Tsujii, 2008), in that, in all cases, the same clasdess(1 andclass 2) of
information are being evaluated

Here and below, we create the zero-training data points @y-¢xes for EDM
by randomly selecting a parse from the (at most) top-500esairsciuded in the
treebanks distributed with the ERG, and choosing one oftiabsandom to create
the EDM triples. We repeat the process over the whole teptisat0 times to get an
average, since we cannot simply use the raw number of pase tiw calculate the
probability of randomly selecting the correct one, as issfiide with exact match.
Because the ranking of the top-500 parse trees is based aseagadection model,
this is not truly random as it uses training data to createb0@tree parse forest
(the same is also true for exact match). However, a trulyaanbaseline is very
difficult to create, as it is not possible to create a genyirehdom parse forest.

We can see that all EDM configurations show approximatelystivae trends,
and maintain their relative order. EDMs consistently higher, which follows from
the fact that many of the properties are inter-dependedtttaat the parser enforces
agreement, so that getting one unambiguous property ¢oigethe lexicon or the
morphology will lead to getting others correct. The mosfidifit type of triple

* While predicate information could be mostly aligned betwélee three metrics, the actual
predicate arguments that represelass 1 are different enough in each case due to different analyses
of, for example, conjunctions and infinitived, that direct comparison is not practical.

rol c-crossdomtex; 22/09/2011; 10:20; p.19



20 MACKINLAY, DRIDAN, FLICKINGER AND BALDWIN

to correctly identify is theaArRG type, which represents the core semantic argu-
ments. We will primarily report results using EQM as the configuration most
like previous work. All of the scores are fairly high — evere tho-training data
baseline (subject to the caveat above about this actuailhg s parse selection
model) for the most difficult EDM relationship has an F-score above 0.7, and
the most compatible mode EDM starts at 0.77 for the baseline, and rises to
between 0.87 and 0.89 where there is abundant in-domaimingailata. The scores
for EDMy A are calculated from 2.8—2.9 tuples per token, dependinbendrpus.

We emphasise that we do not expect these metrics to prodsigésrehat are di-
rectly compatible with dependency evaluations from otlemflisms. As Dridan
(2009) notes, even with simple dependency systems, thairalige range of differ-
ences reflecting the different assumptions made in the geapand mapping be-
tween them is an object of research in its own right (e.g.kGiad Curran (2007a)).
However, our EDM;p metric is broadly comparable to other dependency-based
metrics, and it provides an evaluation of parse quality Whiomplements the
exact match metric. In particular, it may provide a bettatigation of utility to
downstream applications than exact match, since many-me#ch’ trees that
score zero in the Agcmetric may in fact get most dependencies correct. Software
to produce the EDM results will be made available as part@fDELPH-IN code
distribution?

3.4. COMPARISON OF EVALUATION METRICS

It is also worth considering at this point whether the défeces we could ob-
serve between the behaviours of exact match and depentesegevaluation are
purely because the EDM metric is far less sensitive to effe€sentence length.
Correcting Acg for sentence length is difficult, but we show in Table IV the@as
results aggregated by sentence length trained on solelgrimain data. As the sen-
tences get longer, the number of parsing decisions needezhbses exponentially,
S0 it is unsurprising that exact match accuracy decreastteeaentence lengths
increase, but it is not necessarily clear that this shouldebthe case for EDMjy,
since we may be getting most dependencies correct withiaghtence. The table
suggests that this is indeed the case — the longer sentamrdearder to parse even
relative to their sentence length, as the relatively lefigdlependent EDM metric
does indeed decrease. The question of whether EDM gives resthran we could
get from correcting Acc for sentence length is difficult tsaer. However, we
can see that the well-populated 30—34 range has a lower &t Acg, than the
25-29 (unsurprisingly), but a higher EDM F-score, whichdeisome support to
this notion.

Relatedly, we can see that LOGON gets higher exact matcbrpesthce over
a similar quantity of training data than ¥8CcIENCE — we would like to know if
this is purely because of the slightly higher sentence keagtl average ambiguity

* http://ww. del ph-in. net
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Table IV. WEScIENCEand LOGON test corpora using models trained on all in-dortaians
aggregated by sentence length, scored against exact match),(top-10 match (Acg) and
EDMnxa. EDMxa figures come from an average of 2.81 gold tuples per token fe88VENCE
and 2.87 per token for LOGON.

WESCIENCE LOGON

Length Sents Acc Accio EDMna Sents Acg¢ AccCio EDMna

P/ R/ F P/ R/ F

0-4 350 87.4 99.7 93.7/93.7/93.7 361 93.1 100.0 97.1/97QU 9
5-9 167 62.3 94.6 90.5/89.8/90.1 302 71.2 96.0 93.4/93.12/93
10-14 247 46.6 88.7 91.4/89.6/90.5 311 585 90.0 93.4/ %B&/
15-19 234 265 654 88.8/87.1/88.0 298 34.6 71.8 91.7/80D/
20-24 212 20.3 61.8 89.1/87.2/88.1 231 20.3 58.9 89.9/ 8®eY/
25-29 136 125 36.8 87.5/83.5/85.4 135 11.1 31.1 89.2/ 8B/
30-34 87 6.9 27.6 88.4/87.2/87.8 56 10.7 32.1 90.2/86.2/88.
35-39 36 28 16.7 86.7/84.8/85.8 21 48 143 90.4/81.9/85.9
40-44 11 0.0 9.1 85.1/68.9/76.1 7 0.0 0.0 88.3/77.5/825
45+ 2 0.0 500 98.5/35.7/52.4 5 20.0 20.0 96.1/97.0/96.5
ALL 1482 44.1 73.7 89.2/86.6/87.8 1727 525 77.9 91.5/9008

of WESCIENCE. The lower EDM score for in-domain YW5CIENCE compared to
in-domain LOGON in Figure 5 makes us suspect th&#SMeNCE is intrinsically

a ‘harder’ corpus to parse with the ERG (which would be unssirg, given that

it has been more extensively tuned for LOGON), but we wowd to evaluate
this against Acc as well. The results in Table IV lend somepsupto the greater
difficulty of WESCIENCE, even for sentences of similar length: all ranges with
more than 20 sentences have higher performance for LOGON.

Splitting results by sentence length also allows us to miagety examine the
EDM numbers. For both corpora in Table IV, we see a preferdocerecision
over recall when measured over all sentences, a trend thepesited in all EDM
results reported here. When broken down by sentence lengtbee that this trend
is fairly stable, but more pronounced as the sentences iggetoError analysis at
the individual sentence level has shown us that this imioalaeflects a slight but
genuine tendency of the parser towards simpler analysédeviter dependencies,
which is perhaps an artefact of the parse selection modeig besigned to pro-
duce the correct syntactic analysis, rather then beingnigeid to produce semantic
dependencies.
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4. Experiments

The test and training corpora are all originally parsed \WEIT (Callmeier, 2000)
and the most recent “1010” version of the ERG. The text wad&-tagged with
TnT (Brants, 2000) to enable handling of unknown words, ahdrgreprocessing
is done using the default settings for the corpus as configuréhe [incr tsdb()]
performance and competence profiler (Oepen, 2001).

We evaluate over corpora in several different domainsnitrgi discriminative
parse selection models based on manually annotated tledbatadrawn from the
corresponding training corpus.

4.1. METHODOLOGY

In our experiments we are interested first in the effects ofala on parse selection
accuracy, as evaluated using our various evaluation reégi@ct match at varying
top-N beam widths, and EDM F-score). The second stage of our expets is
designed to investigate the domain adaptation problem,vajuating different
methods of combining in- and out-of-domain data, and to @ephow much in-
domain data is required to make an appreciable differenparging accuracy in a
particular domain. Both stages of the experiment drew frieensame training and
test data sections.

To generate training and test data from the two larger carfp©GON and
WeScience), we first shuffled the items in each corpus withegand for section
boundaries, and then selected roughly equal-sized training and tesatstts from
each (see Table Il for the exact item numbers). Finally, weloaly divided the
respective training sections into fixed subsections to nsgenerating learning
curves, ensuring there were approximately equal numbedokenhs in the sections
from each training corpus (Table Il shows this also corraggdo a similar number
of rule applications, since WScIENCE and LOGON both have 1.38 construction
rules per token and around 0.38 lexical rules). The same it@atidns of training
data subsections for a given amount of training data wera imsa&ll experiments.

We train the discriminative parse selection models in tlaenBwork of Vell-
dal (2007), along the lines of previous work such as Zhand.&2807), which
involves feeding in both correct and incorrect parses 8eenby the grammar to
the TADM toolkit (Malouf, 2002), and learning a maximum ey model. In all
experiments, we use the default feature function sets froewiqus work, with
training parameters selected from the grid search we caoaduc

* LOGON, however, contains either 2 or 3 English translatioheach original Norwegian sen-
tence (as noted in Section 3.1), so as part of this, we ensia¢dentences translated from the same
source sentence were placed together in the partitioninigntt the chance of having very similar
sentences in multiple sections.

rol c-crossdomtex; 22/09/2011; 10:20; p.22



23

4.1.1. Grid searching to optimise training parameters

To train our models, it is necessary to select in advance eéauf parameters.
Firstly, we need to set the standard maximum entropy paemeequired by
TADM: absolute tolerance, relative tolerance and variadaditionally, Velldal
(2007) notes the importance of other significant threshodtigted to the features
themselves rather than the learn@randparenting levels the maximum depth
above a target node we will use to extract features wheninigaithe model. A
level of 2 means that when we examine a particular target,oeereate features
based on the immediate parent node (one level) as well asréimelgarent (two
levels). This can improve performance (Zhang et al., 20bd),can also cause
data-sparseness for small training sets, which we willnofie dealing with here.

Another important feature-extraction parameter isrdlevance count thresh-
old. Following Malouf and Van Noord (2004), a feature is relavidnt takes
different values between known correct and incorrect gaesed thus is useful for
discriminating between different outputs. The relevarmant of a given feature is
the number of input strings for which the feature is relevaot by demanding
a minimum value for this over the whole corpus, we affect Wwhieatures are
included in the model.

While we could have selected these parameters on the basitidperformers
in prior work such as Zhang et al. (2007), most of this worluasss a relatively
large training set, which is not always the case for our wagkehfor example,
learning curves by their nature require a smaller data sstdd (2007) details
performing a grid search to optimise these parameters.nkskyg we can enu-
merate all possible values we wish to test for each parameer evaluate the
performance of each possible combination of those param&t&e can achieve this
using cross-validation over our existing corpus, repdatediding out a different
subset to test on, and training on the remainder then aggrggae results over
all the folds. The maxent training parameters and the maetton parameters
can be optimised simultaneously, since there may be intenscbetween them.
For training, we make the reasonable approximation thavagice counts ov%"
of the corpus that we use in 8-fold cross-validation are @gprately the same
as those over the whole corpus, to avoid the need for muléippensive feature
extraction operations for each fold. The optimal parametenbinations are then
simply those with the highest exact match accuracy oventieing data.

Here, we would like to ideally find the set of parameters wipehforms opti-
mally over each different set of training data — which is dezef different training
sets. To perform grid searches over all of these, and halerafit parameters
configured for all of these would be prohibitively expensarel complex. Instead,
we aimed to find a single set of parameters which performeskdimoptimally in a
range of configurations, from a small single corpus trairsagto a larger training
set encompassing both corpora.
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We performed a grid search over the following training cerpombinations,
to make sure that we were testing over a representative i@Eng@pus sizes and
combinations reflecting the diverse corpus sizes we woulddieg for training
data:

— 11,000-token subsets of both WeScience and LOGON (750-&1@rses)

— 23,000-token subsets of WeScience, LOGON and a 50/50 $piiedwo

— 46,000-token subsets of WeScience, LOGON and a 50/50 $ptiedwo

— 92,000 tokens of a 50/50 WeScience/LOGON split

— Full WeScience and LOGON training corpora (185,000 toKE®800 sen-

tences)

For each corpus combination, we tested 288 different pasareembinations (all
possible combinations from those listed below), trying rgeaof values for each
parameter comfortably spanning those which produced mei@-gf-the-art perfor-
mance in (Zhang et al., 2007). We aggregated accuracy ogerrttss-validation
folds to give an overall accuracy figure for each parameterldnation, and con-
sidered only combinations that ranked in the top 100 out 8ffaBall of the corpus
combinations (suggesting they are robust across différaining data sizes), giv-
ing 22 parameter combinations. From these, we selectedthbination with the
highest mean rank, although all 22 combinations had exattmaacuracy within
0.8% of the best for the corpus, so in practice any would perfeell. For tractabil-
ity, we followed the standard practice of Velldal (2007) ging a pre-parsed corpus
of the top 500 parse trees for each sentence according to paweus model.
In each iteration we reranked these parse trees using themoelel rather than
exhaustively reparsing, which saves a considerable amafuremputation time
and produces approximately equivalent accuracy figures.

We tested the following parameters in different combinati¢the parameters
we ultimately selected using the described procedure gtéiginted in bold):

— Relevance count thresholtl; 2, 3, 5

— Grandparenting level, 2, 3, 4

— Maxent relative tolerancd:0~%, 10-%, 1010

— Maxent variance10, 102, 10°, 1072, 104, 106
The parameters selected differ from Zhang et al. (2007) ingusnly 3 levels
of grandparenting rather than 4, which is unsurprising mjittee comments above
about data-sparseness in smaller training corpora.

4.1.2. Single domain models

To evaluate the cross-domain effect, we use the parametens during the grid
search and train parse selection models over differing atsaf training data from
LOGON and WeScience. We apply them both in-domain (to theesponding
held-out test data) and cross-domain (to the test datasettsef other corpora) and
look at the relative differences between domains, accgrttirour various evalua-
tion metrics. We also created learning curves using diffesized subsets of both
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WeScience and LOGON as the training data against each tgsts;oncluding the
in-domain corpus.

4.1.3. Models from unmodified concatenated data

Next we looked at some simple strategies for alleviatingctioss-domain penalty.
From the work described in Section 2.2, there are varioagegfies for achieving
this. Domain-adapted POS-taggers or supertaggers (Lemks€laarniak, 2005;
Rimell and Clark, 2009), have been successful in the biooa¢diomain, in the
latter case for helping to constrain the parser search sp&igis not something
we investigate here since domain-adapted tagging modetsareadily available;
additionally, in the parsing configuration we use, POS tagds only used for
unknown words, but investigating the utility of POS-taggfor domain adaptation
is a possible area for future work.

Given that we already have relatively large training coagarseparate domains,
a logical first step is to see how much manually-treebankéalwi@ need in order to
improve accuracy in a new domain, whether we should combiisentith existing
data, and how best to do so.

First, we evaluated a relatively naive method for combinitagning data from
the LOGON and WeScience domains into one model. In thiseglyatdenoted
CONCAT, we simply concatenate the training data sets and train &kltaxodel
from this, in the same way as the “combined” method of Har& é2605). To sim-
ulate the effects of differing amounts of treebanking effare varied the amount
of in-domain training data used in each model.

4.1.4. Linear combinations of trained models

An alternate approach todCAT, which we denote GMBIN, is to use MaxEnt
models derived from simple arithmetic combinations of ofe-trained models,
similar to McClosky et al. (2010). A MaxEnt model is simply at ©f feature
weights. If we have two trained MaxEnt models A and B, and wshwib use
weighting parameters and 8 to combine these models into a new model C, the
weight\ for a given feature in C will be given byc = ai 4 + A wherel 4 and

Ap have values of zero if the given feature is not explicitly @ted in the model.
Since parse ranking uses the unnormalized MaxEnt scorngftomtatios matters,
we constrain and 5 to sum to one, preventing multiple equivalent models. For
example, assume we have the following weighting paramersiseature/weight
pairs (i.e. vectors ok values) for each model:

a=0.3 B8=0.7
ma= {1:1.52:2.0}
mp = {1:0.5,3:—1.0}
The resulting model is simply the weighted linear combiati
me=141:0.8,2:0.6,3:—-0.7}
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For our experiments here, the pre-trained models come fo@uotly one single-
corpus treebank before they are arithmetically combined.

This is a potentially useful strategy as it allows flexiblel éawst tuning of parsing
models with the possibility of improving performance in amher of cases. Using
this strategy, we might as a starting point create a comhimedel by setting the
weighting of each corpus in proportion to the number of sesgs in the treebank
from which the model was trained. (We may expect to produceesdat similar
results to the aforementioned strategy of training a maaehfthe concatenated
treebanks, but there is no guarantee that this is the case/@\r, often we might
expect better results by biasing this weighting somewhatgeineral, we probably
wish to give more weighting to the model trained on a morelsintieebank. It is
clear that this could be useful in the situation where we fzasmall treebank and
trained model in a new domain that we wish to use most effelgtialongside an
existing model from a larger treebank — by modifying the aéiiligs, and probably
boosting the weighting for the corpus in the new domain, wetsaway to make
maximal use of this small amount of training data, withowdiag to discard any-
thing from the larger established treebank. A related sdnas where we have two
models trained from treebanks in two domains, and wish tegoarthird domain
for which we have no treebanked data. Intuitively, we shanlike use of all the
data we have, but it may improve performance if we give a highgighting to
the domain that is more “similar” to the target domain — i.eoviding a higher
accuracy parse selection model. McClosky et al. (2010) stsmmnea priori ways
to determine this for a different parsing framework. We do ingestigate this in
detail here, but as described below, we do examine someitgemto optimise
the parameters when we know that the target domain verylglosgtches some
small training corpus.

4.1.5. Monolithic models from duplicated data

We also investigate another method for weighting two trgréorpora differently
when they have different sizes and probably different eélappropriateness for
the test data. In strategyu®Lic, we simply duplicate one of the corpora some
number of times, as if the training corpus consisted of rpldtcopies of every
sentence, then concatenate the data to the other corpusteact &aining features
and train a model in the same way. As noted in Section 4.1.1ayeafiention to
certain ‘counts’ associated with each maximum entropyufeat in particular the
relevance count threshold, for how many times a feature baa bsed to distin-
guish between good and bad parses. These relevance coerte@mented in
the duplicate corpora as if the sentences are genuineipatisThis is obviously
a generalisation of GNCAT, but we treat it separately, aso@CAT is the usual
default approach for combining such corpora.

In comparison to ©MBIN, this is a more expensive approach to optimise over
different corpus combination parameters, since we needttain the maximum
entropy model (and, currently, recreate the feature cdohepch different weight-
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ing of the corpora, rather than building at most two modet gerforming a rapid
linear combination. Nonetheless, this might lead to a momi@te model than
CoMmBIN, justifying the extra cost, although in a system which ignigyto optimise
between several different corpora (rather than just two @sre doing here), this
extra cost may be prohibitive. If the parameters are knovadirance however, and
we are merely trying to build a model, the difference in tiggntime between the
two approaches is minimal.

4.1.6. Optimising combination parameters

One of the potential disadvantages of the more nuanced oatidn strategies
is the need to determine effective parameters. EvenofM@N or DuPLIC can
provide superior results with some set of parameters, thés dhot address the
guestion of determining the optimal set of parameters witlkvaluating over the
test data (which would not be realistic for a real-world @gailon where the gold-
standard annotations presumably don't exist). In the samethat we can tune
the grid-search parameters using cross-validation owetrdining data, we can
also use a similar approach to optimise the weights or nighifion factors for
each domain. Specifically, we can use our small in-domainitrg set, divide that
corpus inton cross-validation folds, and combine the training data femnh fold
with the complete data-set from the larger out-of-domaipgs using © MBIN or
DupLIcC with various sets of parameters, then test over the test fold

For 8-fold cross-validation, which we use here, this meagswist train and test
8 models per set of parameters. For 7 differentPDic and 10 different ©MBIN
parameters, this means 136 different models are requiretegerun. As in the
grid-search discussed above, we rerank rather than refpese sentences.

By aggregating these test fold results, we can select thenapparameters.
For tractability, we only calculate Agdusing reranking of the parse forest) for
the cross-validation results, and simply select the highesuracy combination as
‘optimal’. A more sophisticated approach could also take account factors such
as consistency, as measured by a low variance across tisevalaation folds, and
also pay attention to the other scoring metrics.

Of course, we cannot guarantee that the parameters wikdhte optimal over
the test data. For this reason, as a post hoc analysis, weagv#he various param-
eter combinations both using cross-validation and ovetdbiedata, to determine
how close the best performer in cross-validation is to thtevw parameter values
for unseen data.

4.1.7. Software Tools

To perform the tasks, including grid search, optimisativeraCoMmBIN and Du-

PLIC parameters described in Section 4.1.6, and reranking sfiegiparse forests
against a new model, we customised a C++ implementationeofelfiture extrac-
tion code and model training code, knownnsPs (duplicating functionality of
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Table V. Results using different metrics (exact match on higheskead tree [Acg], exact
match within top-10 [Acg], and Precision, Recall and F-score over EDMand F-score
on EDM.,y1), for each of the test corpora, training on pure WeScienqaiog LOGON data,
or for a baseline randomly selected from the top-500 paesgsed according to a combined
WESCIENCELOGON model. As in all results, WSc and LOG test data is 2 sections of
held-out data not overlapping with training data. Bold @ades the training data has the
same domain as the test data. Figures in square bracketardars deviations, calculated
over 10 random partitions of the data

Test Train Acg Accio EDMya
P / R / F

- 137 375 792 | 757 | 774
LOG  WESc 36.7[4.5] 66.7[3.1] 86.2[0.9]/83.7[1.1]/84.9]0.6]
LOG 52.5[2.6] 77.9[3.1] 91.6[0.7]/90.0[1.2]/90.8[0.7]

~ 133 35.3 796 | 760 [ 77.7
WESC WESc 44.1[2.9] 73.7[3.6] 89.2[1.1]/86.5[2.1]/87.9[1.5]
LOG 33.6[4.4] 62.4[3.7] 84.3[0.8]/80.8[1.7]/82.5[1.2]

- 78 24.5 805 / 765 /| 784
C&B WESC 27.2[6.0] 61.9[5.0] 88.3[1.2]/84.5[2.8]/86.4[1.7]
LOG 27.7[3.7] 57.7[7.4] 87.2[0.9]/82.9[2.9]/85.0[1.7]

~ 280 69.2 740 | 661 [/ 69.8
ROBOTL  WESC 43.4[6.7] 86.4[3.3] 82.3[3.0]/75.3[5.2]/ 78.6[4.1]
LOG 45.6[5.7] 89.2[2.3] 82.6[3.9]/70.1[4.4]/75.9[3.7]

[incr tsdb()] in some cases). We plan to make this code aMaik® the community
as part of the previously-mentioned DELPH-IN code distiitu

5. Results
5.1. EVALUATING THE CROSS-DOMAIN PERFORMANCE PENALTY

In Table V we give an indication of the size of cross-domairfggenance penalty
using the ERG for these four domains, against the baselirferpgnce for ref-
erence (giving us an idea of how difficult the parse selegtimblem is for that
corpus). It shows results using several metrics: exacthmacthe highest-ranked
parse, exact match within the top 10, and precision, recallFzscore for EDN
and EDMya.

Of primary interest here is how the performance over WeSeiatata drops
when the training data is purely LOGON versus purely in-dionvdeScience data,
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and vice versa. A related question is whether for a given meget domain (e.g.
C&B or ROBOTL) we would expect each alternative training corpus to giyeadly
useful accuracy figures. So, the results shown are oversilctgpora using all
WeScience data or all LOGON data as training data.

We see here that in our two major test sets, a domain penaltigeaeen across
all evaluation metrics. For EDNy, which is the most comparable to dependency
evaluations in other formalisms, the out-of-domain drop-6%, which is in line
with domain effects seen elsewhere. For the ;Aand Acgg figures, there is a
larger 10.5-15.8% drop, which is not unexpected for a sirictetric.

The results also show standard deviations, calculatedimpadng results from
10 random sub-partitions of the test data. As we would expleetstandard devi-
ation is larger for the exact match metric, where it rangesnf2.5 to 7%, than
for the less-variable EDM F-score, where it is between 0d64t%. We also see
much greater variation for all metrics on tReBoT1 corpus, and smaller standard
deviation for exact match when the training corpus is froemshme domain, al-
though this does not hold for other metrics, and may not beningéul. For the two
test corpora where in-domain data is available, we seehkalifference between
accuracies from in-domain and out-of-domain training datsubstantially larger
than the standard deviations, but for the other two testararphe differences
caused by using the different training corpora are muchlemtilan the standard
deviation for a single model, so the difference is too snwatliaw conclusions.

Comparing these results with the relative entropy figureBigure 2, there is
generally a correlation between a lower relative entropytdgher parse selection
score using the corresponding model. TheSiIENCE and LOGON test corpora
unsurprisingly show this effect most strongly, where theme the largest relative
entropy differences against one training corpus versusttier (close to zero for
the in-domain corpus). Both C&B amgoBoTl generally show differences ac-
cording to the metrics which agree with the differences Iatiee entropy against
the training corpora (lower relative entropy correspogdimhigher scores), but as
we noted, these differences are not large enough to beyckgrificant.

In Section 3.2, we argued that Acand Acg are easy-to-calculate representa-
tives for a range of figures denoting treebanking utilityilllesstrate this, in Figure 6
we show the Acg that would be obtained for values &f from one to 500 for
some of the same in-domain and cross-domain training/teebmations that are
shown in Table V. The full graphs more directly show the dfeaf interest for
treebanking, but they are expensive to create. Comparibgeba these graphs
and Table V, it appears that Acand Acgq are representing some of this picture.
In Figure 6a, the two parse selection models for the WeSeidata set result in a
fairly consistent difference of around 11%, a consistehey tan be seen just from
the Acg and Acg, values in the tablé.For Figure 6b, the gap narrows as the
beam widens, a fact again reflected by comparing; Aew Acgq for the relevant

* The WESC treebank is parsed and treebanked against the top-50G@serding to a model
trained on the VESc data itself, so we might expect the accuracy to reach 100%gur& 6a, but the
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Effect of N on finding match
within top N: WeSc

Effect of N on finding match
within top N: LOGON
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Top-N Scoring beam cutoff
(a) WESCIENCE

LOGON data set results. This narrowing gap shows that thadtgf in- vs. out-
of-domain training data is reduced when we are looking aenparses — probably
because the less ambiguous sentences of LOGON are moyettikedve less than
N possible parses for higher values§f(i.e. all parses are within the beam), in
which case the parse selection model does not matter.

For the test sets for which we have no in-domain training ,ddere is little
difference between the two parse selection models. Thefi@oever, provide an
interesting comparison between the exact match basedcsetrd the F-scores. In
terms of EDM, the V#Sc trained model gives almost the same results over C&B
(within 2%) as it does for the in-domain test set; however Alac, results are much
lower. For therOoBOTL data set, the EDM results are substantially lower than on
any of the other test sets, but Acand Acg, are high. To partially explain this,
we can look back to Table 1l. We saw there that the ambiguitgllef theroBOTL
corpus, measured in parses per sentence, was much lowethttaof the other
data sets. This simplifies the parse selection task, sirae tre fewer analyses
to consider. Conversely, the longer and more ambiguousisess in the C&B
corpus make it much more difficult to get every aspect of aryaisaright. The
relatively high F-scores for this corpus suggest that batise selection models
are doing a good job of returning a top parse with most of tigeddencies and
constituents correct. The different behaviours of the A@md EDM metrics on
different corpora show why we should consider both togeitheelecting the most
appropriate parse selection model for a particular corpasthe rest of this work,
we primarily report results on exact match (Arand EDM 4, with brief results
for Accyy where appropriate.

model we use here does not use the complete WeScience dataddeds slightly different training
parameters.
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The results in Table V were produced by using all the avadl#falining data for
each domain. We were also interested in how the results edanih the amount
of training data and so learning curves were produced fosémee training and
test sets. The learning curves obtained using the two difteraining corpora of
approximately 8000 sentences each are shown in Figures & asithg the exact
match metric as well as EDM F-score over four different thstains. In each

case, the in-domain corpus is marked as such.
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Trained on LOGON Corpus
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Figure 8. Learning Curves — EDMa F-score

The basic shape of the curves is unsurprising. Genera#ycuihves are mono-
tonically increasing, so more training data of any type pias better results. This
effect continues even when relatively large amounts ofingi data were already
being used, but as we would expect, there is some flattenfrig thfese curves, as
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the more training data we have, the less incrementally tdugis. This levelling
off is more noticeable when the training data is entirelyafutiomain — suggesting
that there is a limit to the amount of out-of-domain data \tdan usefully improve
parsing performance, at least in isolation (i.e. when natambination with in-
domain data, which is discussed in more detail below). lddigés possible that too
much (solely) out-of-domain data could have a detrimerftate There are small
drops in some of the learning curves as out-of-domain daddsd, particularly in
the Acg evaluation, for C&B,rRoBOTL and LOGON at various points, although
this is at most a very minor effect.

Again, we can clearly see that Acand EDM give a different picture of per-
formance on the C&B an&oBOTLl corpora. Comparing these figures tells us
something else about the different metrics: in some sdnatiAcg may be more
useful in differentiating the success of a given model ontiplel domains. The
exact match metric shows more noticeable relative chariges EDM when we
make subtle changes in the model and the domain, emphasisnignportance
of domain for treebanking or other applications where we al&inan exact tree
match. The EDM results cluster more closely in absolute ¢dionmost data sets
regardless of the amount of training data or the domain,Haretare still reliable,
albeit small, changes as the amount of training data isealtdrhis follows from the
more ‘forgiving’ nature of the EDM-based evaluation, bulgo tells us something
about the grammar: given a very small amount of training ffata any domain,
the top-ranked parse will have most of the dependenciesaorr

For maximum sensitivity in parse selection experimentsyglsas tractability
in experiments with many successive runs such as grid sesgjrolie would argue
that the exact match metric is undoubtedly useful, and ges/a complementary
perspective to EDM.

If the EDM metric, as intended, more closely reflects thegraentince we could
expect in downstream applications, it may appear that thesanore robust to
changes in domain. However, it is possible that for thesdiagtipns using the
parser output, it is the error rate which is more importandnfrthis perspective it
seems EDM can be more sensitive to choice of training donmain &xact match.
From Table V, we can see that overB&CIENCE, for Accy, the error rate goes
from 66.4% to 55.9%, a 16% relative reduction, when moviegifout-of-domain
to in-domain training data, while the relative reductiorEDM F-score error rate
(from 17.5% to 12.1%) is 31%. Similarly for LOGON by usingdiemain data,
we get a 25% relative error rate reduction for Acand 39% for EDM.

Itis also instructive to compare error rate reduction redaiio the random base-
line (although it is not truly random as it incorporates ttye-600 parses according
to a model which has training data froma8cience and LOGON). For EDM
the relative reduction from using out-of-domain data is 2% WESCIENCE,
and 33% for LOGON. This is smaller than the reduction in eradte when we
move from out-of-domain to in-domain data (31% and 39% retbpady, as quoted
above), suggesting that a tuned parse-selection modelitis iquportant — it can
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give more of a performance boost over an informed but unredttfaining corpus
than that unmatched corpus does over a random selectioredoviurther exper-
imentation would be required to determine whether the eaterreduction is more
meaningful in terms of downstream utility.

Additionally, it seems that not all corpora are equal in temf cross-domain
applicability. From Figures 7 and 8, we can see that WeSeiasdahe only train-
ing corpus gives slightly better results for C&B (apart frahe slightly higher
Acc;from the full 93000 token training sets when using LOGON)waswould
predict from the relative entropy figures. On the other héimelpest training corpus
for ROBOTL is less obvious. Indeed, it seems that training data bettoadirst
11000 tokens does very little, and sometimes decreasesrpetrice. LOGON
gives slightly higher exact match performance, althoughfitures are so variable
that the differences may not be meaningful. In generalpitmgi data does little
for ROBOT1 probably due to the very different nature of the corpus cmeqb to
the data we have available, with the smallest absolute ingpnents and error rate
reductions over the baseline of any of the test corpora.

5.2. CONCAT: NAIVE CONCATENATION

Having measured how much our performance is affected bygusitty out-of-
domain data, we now look at the results from the simple cemedion of the two
corpora of training data (GNCAT). There are likely to be two significant factors
here — the amount of in-domain data, and the amount of odbofain data.

One common scenario might be that we have a fixed volume afitigaidata,
and wish to know how much in-domain data we need to treebasklistantially
improve performance when combining it usin@&cAT with the out-of-domain
data, or alternatively how much improvement we can expeah fsome volume of
in-domain data. Secondarily, it is interesting to investiigwhether it is possible to
add too much out-of-domain data compared to in-domain -eigthver a situation
where more data does not improve performance?

In Figures 9 and 10 we show some indicative results for thasstopns, using
no out-of-domain data or all of it, and evaluate how theyraute with different-
sized in-domain training corpora.

One interesting result from these figures is the effect thah @ small amount
of in-domain training data can have. Using a model built amyapproximately
11000 tokens on in-domain data, we get better results tiealathe out-of-domain
trained model. Over the YWSCIENCE corpus, once we have around 23000 tokens
of in-domain data, the out-of-domain data is having almaseffiect. There does
not appear to be a negative effect from including the oudafiain data, but the
benefit is almost non-existent for ¥8cIENCE and very slight for the LOGON
corpus. We also see that the additional benefit of adding mestemain data tails
off once we have a reasonable quantity (i.e. a few thousamersees), which is a
similar effect to the learning curves.
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Figure 10. Combining in-domain and out-of-domain training data usB@NCAT: training a

model from concatenated training corpora: EDM

5.3. OPTIMISING PARAMETERS FOR CORPUS COMBINATION

While CoNcCAT is the most obvious strategy for making use of limited quisti
of in-domain training data when we already have an abundamius of out-of-
domain data, it is possible that some scheme which givesidreaeight to the
in-domain training data would provide superior perform&anthe WMBIN strat-
egy of Section 4.1.4 (linearly interpolating between twogst-domain models)
is one way to address this, and the/®LiC strategy from Section 4.1.5 (multi-
plying the in-domain corpus by some integer) is another. &l@x as noted in
Section 4.1.6, both strategies are parameterised, sdyidealneed a method to
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Figure 11. Aggregated accuracy usingo™BIN over the eight cross-validation folds of
the in-domain corpus, where the in-domain training datehés dther seven folds and the
out-of-domain data is the entire other corpus

optimise the respective parameters in advance for unsean @eoss-validation
over the in-domain training corpus may be able to achieve whth a relatively
simple implementation, and we investigate this possybiiire.

The graphs in Figures 11 showo®BIN results for two different-sized in-
domain models, and how the performance varies as the weigbttween the
in- and out-of-domain models is varied, with exact matchuaacy calculated
by reranking rather than exhaustively reparsing. Cledhnly,choice of weighting
makes a relatively large difference: the worst performingighit combination is
substantially worse than simply using th@KCAT strategy. Both curves show a
similar parabolic shape, with the optimal mixture pointrigefurther to the right
for the larger in-domain models in each case, meaning thathietter to weight
the in-domain model even more heavily when it is larger, ymeebly because it
is more reliable (compared to a model from a smaller treepaskvell as being
closely matched to the domain.

Figure 12 shows the results forubLIc, which duplicates the smaller in-domain
corpus some integral number of times and combines it withlahger out-of-
domain corpus before training a model. Again, we show grdiphsvo different
sized in-domain training sets, this time varying how manyet the in-domain set
was duplicated before training the model.

For handling real-world data with an unbalanced in-domairpas, we might
generally pick the best-performing parameter set fromsskadidation and apply
that parameter combination to new data. We evaluate thisbaph over the test
data from previous sections (which has not been used for atlyeoparameter
tuning). In Table VI, we show the results over unseen test, desting the parameters
which performed best in training set cross-validation gdbdupPLIC (results for
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Dup, targetting WeSc Dup, targetting LOGON
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Figure 12. Aggregated accuracy usingubLIC over the eight cross-validation folds of
the in-domain corpus, where the in-domain training datehés dther seven folds and the
out-of-domain data is the entire other corpus

CowmsiN did not reliably outperform the @uCcAT benchmark). For another point
of comparison, we also applied the same technique using-eadilation over the
ROBOTL development set (which has not yet been used until thig)poaémbined
with different combinations of the WScIENCE and LOGON training sets and
tested using the same test data as used in previous sections.

We calculate statistical significance using the “computerisive” shuffling
procedure of Yeh (2000). In a given iteration, for all resuithich differ between
the new method and the benchmark, we swap each result phipwabability 0.5
and test whether the new synthesised results differ by ntame was observed
between the actual results of the new method and the benkhmvhich would
suggest the difference is due to chance and the null hypetbesld be true), in-
crementing count if this is the case. Repeating for some large number of itarat
t, thep-value can be estimated to be at mést.

Our end-to-end procedure selects a parameter with crdisdian, and uses
that parameter to build a model to apply to the test corpuge$owhether this
technique gave a consistently significant boost over thetreark, we aggregate
all benchmark results for the different test and trainingpos combinations, and all
those to which we have applied parameter selection owsnx. This aggregation
avoids multiple runs (using different training and/or teata) falsely showing sig-
nificance by chance. BpLIC in these conditions produces statistically significant
improvements over the benchmark on unseen data foy,A@x;o and EDMy, at
p < 0.001 — even though the improvements are modest in some indivichsds,
as we can see from the unaggregated results shown in TablEAKIBIN (not
shown in the table) does not provide an improvement — all te&ios decrease,
Acc; significantly so. But if we restrict ourselves touBLIC, it seems that this
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Table VI. Comparison of results for @PLIC, with weighting parameter selected by cross-valida-
tion over training data (the first usage of thesoT1 training data), and evaluated over standard
test sets and metrics (AccAccipand EDMya) used previously. Aggregating theubLiC results
with CV-parameter selection indicates results are sigamifiy improved over the benchmark at
p < 0.0001 for Acci, Accipand EDMua

Test Train Tokens 0.0.D Corp Weights 1A A,y EDM
I.D. 0.0.D
bench k 450 724 88.1
LOG 116k 923k WSc enchmar

DupLIC 8,1) 459 735 887

benchmark 46.5 73.9 88.9

LOG 23.2k 923k WS
c DupLIC 3,1) 477 746 89.1

benchmark 74.0 935 89.0

ROBOTL 4.5k 92.8k LOG
DupLIC 3,1 75.1 93.6 88.8

benchmark 75.1 93.3 88.8

ROBOT1 4.5k 92.3k  WESC
DupLIC 4,1) 75,5 933 89.2

benchmark 755 931 89.1

ROBOT1 4.5k 92.8k W+L
DupLIC (10, 1) 77.8 935 90.0

benchmark 37.9 66.9 84.1

WESC 11.5k 928k LOG
DupLIC 2,1) 385 67.8 843

benchmark 40.3 69.0 854

WESC 23.1k  92.8k LOG
DupLIC (10, 1) 420 713 86.3

simplistic and imperfect cross-validation technique toetparameters can produce
statistically significant improvements in accuracy andcérs at the cost of only
some CPU-cycles, with no observed performance drops dghi@denchmark.
For 23000 tokens of \WWSCIENCE, we get a relative reduction in the exact match
error rate of 2.9% and 6.1% in the EDM F-score error rate, atras much as we
would get from treebanking an extra 23000 tokens.

All of this is dependent on being able to closely match the aesl training
corpora — we must be sure they are from the same domain, whighnat be as
easy in practice as it is with curated data sets. The ‘shgfflive used to divide
up the corpora may mean that the match between the diffempus sections
is artificially close compared to what we would see in reattd/a@ata, so this
could have slightly inflated the performance improvemerasmfupweighting the
in-domain data and parameter-selection using the traicimgus. The relative en-
tropy comparison we discussed in Section 3.1.2 suggestpassible strategy for
matching training and test corpora by similarity autonslic and although the
comparison of lexical rules depended on hand-annotatedl siehdard data, the
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best parse from an automatically-created parse tree maydasanable substitute.
Relatedly, we might be able to apply a more informed appr@dahg the lines of

McClosky et al. (2010), which suggests a model on the bad®wfclosely a test

corpus is predicted to match each possible training corpus.

5.4. APPLYING OTHER PARAMETERS TO TEST DATA

We have established that cross-validation over trainirtg tta select parameters
can give slightly improved parse selection models, but we rep guarantee that
the parameters we obtained were optimal. As an analysiephas instructive to
evaluate a range of parameters over the test data, to sethwlmaicle performance
would be, and whether a more advanced parameter tuningi¢eehcould improve
over the relatively simple cross-validation approach, targimply see how well the
cross-validation scores correlate with test scores.

We show the test set results using over a range wbIDC parameters in Fig-
ures 13, the analogue of Figure 12, and the EDM test set sesuligure 14.
From these, we can see that in some cases cross-validativitga a reasonable
estimate of test set performance and the optimal paran@ter. the smaller set
of WeScience training data, however, it was not helpfulfgremring best in cross-
validation with a(2, 1) weighting for in-domain against out-of-domain, while over
the test set, 410, 1) weighting is substantially better, for both EDM and exact
match. We have again omitted theo@BIN results as the performance did not
reliably improve.

These results indicate thatubLIC is tolerant of suboptimal parameter selec-
tion (this is not the case for @uBIN— the worst parameters produce substantially
worse performance thandBiCAT). The exact match accuracy over the full corpus
usually increases monotonically, so it is almost alwaysonfis benefit to weight
the smaller in-domain corpus more heavily (although, preshly, at some point
these benefits vanish). The same is generally true for EDiMio@adh the increase
is less convincing in this case.

While the cross-validation results seem to provide a reagserestimator of per-
formance over unseen test data, we can evaluate this moreusly by measuring
the Pearson correlation between the cross-validatioftsdeuAcc; and the results
using the same parameters on the held-out test data for lmuthafnd EDM. This
figure is usually 0.99 or more for @rLIC, with the only exception being for &/
SCIENCE with 769 sentences of training data, which gives 0.95 for,Aaud 0.88
for EDM. Thus, the cross-validation estimates are fairldictive of the results we
can expect over held-out data in the same closely-matchedidaising upLIC.
This suggests that selecting the best parameter combinfatim cross-validation
is a potentially useful strategy, at least in terms of prémticrelative changes in
accuracy over unseen data. However, as noted above, thispondence is almost
certainly helped by our data selection method of using randorpus partitions
causing a close match between the training and test corpaditionally, this
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Figure 14. EDMna F-scores for pLIC: duplicating the in-domain data set multiple times

parameter selection does not always produce optimal sesultr new data, so
there is some room for improvement. On the basis of the teatwda have looked
at here, it seems that a weighting arofdl) would be a robust performer, so the
cross-validation parameter selection may not be necessaaithough it may not
be as applicable for all data.

6. Discussion
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6.1. DOMAIN ADAPTATION STRATEGIES

One of the important aspects of this work to other users ofigian grammars

is to suggest a strategy for achieving optimal performanez data in some new
domain, and make a decision about how much effort to experabanking, and
how best to make use of treebanked data. On the basis of thiswewould make

the following recommendations:

— Unsurprisingly, out-of-domain data is much better than atadlIf there are
insufficient resources to treebaakyin-domain data, you can expect tolerable
parsing accuracy from using only out-of-domain data — theala adaptation
performance penalty does not make the outputs from the ERGalnte (and
we might expect this to hold for similarly constructed graang).

— However, the effort required to treebank around 11000 teK&B0-850 sen-
tences for the corpora here) gives substantial gains inracgwcompared to
the benchmark of using only out-of-domain data — these 7bt&rees are ex-
tremely valuable. The time requirements for this are modesstg Redwoods
machinery, Zhang and Kordoni (2010) found that it was pdsdibtreebank a
curated WSJ subset at 60 sentences per hour, while Tanaké2&0b) found
that Japanese speakers could treebank 50 sentences oéskaplctionary
definitions per hour. So even with a conservative figure of @ttences per
hour, 750 sentences would be under 20 hours of annotati@ tim

— Even simply concatenating 11000 tokens of in-domain dagisting train-
ing data gives a good performance boost, but by applying phiencsation
strategy using cross-validation we have discussed forlDc, it is possible
in some corpora to obtain accuracies close to those you wegddct if you
had 11000 more training tokens. Without performing therojgation step,
upweighting the in-domain corpus by a factor of 5-10 prosidear-optimal
performance across the corpora we examined.

— If you have resources to treebank 23000 tokens (roughly $&86€nces) in
total, you can achieve additional boosts in performandboagh the value is
considerably reduced.

— Beyond 23000 tokens of training data for some domain, thesgaiaccuracy
per treebanked sentence are more modest, so the effort wolylte justified
for more difficult domains or if maximising accuracy is of uist concern.

6.2. FUTURE WORK

We have presented only indicative results here for two dosaihich happen to
be available and provide large quantities of training datading out how broadly
applicable they are and whether they extend to other donhedres room for fur-
ther research. Building a new custom treebank of perhap® 266tences would
be tractable and help answer that question. Additionadlif;teaining has shown
small but solid improvements on both biomedical text (M&Ripand Charniak,
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2008) and Wikipedia (Honnibal et al., 2009) so could be aulssfategy to eval-
uate, given that it requires no expensive manual annotafitnk in this direction
could also incorporate recent work on unsupervised paisetem (Dridan and
Baldwin, 2010). Another interesting question is whether ca@ improve EDM
scores, particularly recall, by training a model using seticadlependencies rather
than syntactic constituents, and whether these improve@saevould be reflected
in downstream applications.

Further to this, we have not yet addressed the question af withe treebank-
ing process it is optimal to build the parse selection moadiefrfinimal overall time.
A better parse selection model could possibly reduce trdebg time by requiring
fewer trees to be examined — e.g. from Figure 6a, a domaiptaedanodel can give
as many correct trees in the top 100 as a non-adapted modsl igithe top 500.
It could also increase the chance of having the correct tréfeel parse forest, and
this would reduce the need for rejecting trees, which isi@adrly expensive in
the Redwoods treebanking process as it often requirespieufiasses through the
data (Tanaka et al., 2005). It is not clear how important dfiect would be, but
given this information as well as the time taken to build a eiddhich is on the
order of a few CPU-hours, depending on training set size)coudd work out the
optimal point in the treebanking process to stop and traievamodel to use for the
remaining sentences in the corpus. In future work, we asgdsted in determining
where this optimal point lies, based on exploration of thpant of parse selection
on determinant selection, and in situ treebanking experisn®©ur domain adapta-
tion approach to improving annotation efficiency should bmplementary to the
active-learning strategy proposed by Baldridge and Osb(003) and Osborne
and Baldridge (2004) for Redwoods-style treebank devetopngiven their focus
on identifying which sentences within a corpus will be moseéful to annotate,
rather than on reducing the cost of annotating any giveresent

7. Conclusion

This paper examined the impact of domain on parse selecticuracy in the con-
text of precision parsing, evaluated across exact matcllependency-based met-
rics. Our findings confirm our intuition that parse selectiaouracy is significantly
improved by in-domain training data, particularly if we @méerested in returning
a completely correct parse, and in-domain training datansiclerably more valu-
able in terms of accuracy obtained from a given number ohitigi sentences.
Additionally, the construction of even small-scale in-domtreebanks, which is
fairly tractable, can considerably improve parse selactiocuracy, through com-
bining the in-domain with out-of-domain data. We showed tim@ar combination
of models from different domains can provide slightly imyged performance com-
pared to training from a monolithic concatenated corpubpabh without careful
selection of weights, it can also decrease. A better stydtmgtuning a model to
a domain with a small training corpus was to duplicate thislsmorpus some
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integral number of times. A multiplier of 5-10 often prodsagood results for the
data we have shown here, but we have also shown that the dpta for this
parameter can be estimated on a case-by-case basis by mssgyalidation over
the training corpus, as the values are highly correlatets fifding is highly signif-
icant for both treebanking and downstream applicationsuba the parser output,
and it suggests a useful strategy for grammar consumer®tehsn adapting to a
novel domain.
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